Loading…

Electron transfer in N-hydroxyurea complexes with iron(III)

Redox behaviour of the iron(III) complex with the antitumour drug hydroxyurea was studied by cyclic voltammetry. The complex underwent a one-electron reduction, followed by an irreversible chemical reaction (EC mechanism) in which a ligand was released. In addition, it was found that the hydroxyurea...

Full description

Saved in:
Bibliographic Details
Published in:European journal of medicinal chemistry 2005, Vol.40 (1), p.51-55
Main Authors: NIGOVIC, Biljana, KUJUNDZIC, Nikola, SANKOVIC, Kresimir
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Redox behaviour of the iron(III) complex with the antitumour drug hydroxyurea was studied by cyclic voltammetry. The complex underwent a one-electron reduction, followed by an irreversible chemical reaction (EC mechanism) in which a ligand was released. In addition, it was found that the hydroxyurea gave up an electron to iron(III) in solution. Differential-pulse voltammetry revealed an increase in the concentration of the generated iron(II) species. Electron paramagnetic resonance (EPR) spectroscopy studies of the oxidative degradation of hydroxyurea confirmed formation of the radical species H 2N–CO–NHO .. Electrochemical data for iron(III) complexes of hydroxyurea and its structural analogue 3-ethylhydroxyurea, which also exhibits antitumour activity, show the same mechanism involved in the electron transfer. The observed redox properties indicate that hydroxyurea may interfere with electron transfer processes in biological systems after binding to iron-containing ribonucleotide reductase.
ISSN:0223-5234
1768-3254
DOI:10.1016/j.ejmech.2004.09.012