Loading…

Green-function-based monte carlo method for classical fields coupled to fermions

Microscopic models of classical degrees of freedom coupled to noninteracting fermions occur in many different contexts. Prominent examples from solid state physics are descriptions of colossal magnetoresistance manganites and diluted magnetic semiconductors, or auxiliary field methods for correlated...

Full description

Saved in:
Bibliographic Details
Published in:Physical review letters 2009-04, Vol.102 (15), p.150604-150604, Article 150604
Main Author: Weisse, Alexander
Format: Article
Language:English
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c423t-9903068a67d37541876a08a91daacd573e10200f95e0bf6194cc0a1fd2f1297c3
cites cdi_FETCH-LOGICAL-c423t-9903068a67d37541876a08a91daacd573e10200f95e0bf6194cc0a1fd2f1297c3
container_end_page 150604
container_issue 15
container_start_page 150604
container_title Physical review letters
container_volume 102
creator Weisse, Alexander
description Microscopic models of classical degrees of freedom coupled to noninteracting fermions occur in many different contexts. Prominent examples from solid state physics are descriptions of colossal magnetoresistance manganites and diluted magnetic semiconductors, or auxiliary field methods for correlated electron systems. Monte Carlo simulations are vital for an understanding of such systems, but notorious for requiring the solution of the fermion problem with each change in the classical field configuration. We present an efficient, truncation-free O(N) method on the basis of Chebyshev expanded local Green functions, which allows us to simulate systems of unprecedented size N.
doi_str_mv 10.1103/physrevlett.102.150604
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_67364777</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>67364777</sourcerecordid><originalsourceid>FETCH-LOGICAL-c423t-9903068a67d37541876a08a91daacd573e10200f95e0bf6194cc0a1fd2f1297c3</originalsourceid><addsrcrecordid>eNpFkF1LwzAUhoMobn78hdEr7zrPadqkuZShUxgootclS09YJW1m0g7890Y28OrA4Xnfw3kYWyAsEYHf73c_MdDB0TguEYolViCgPGNzBKlyiVieszkAx1wByBm7ivELALAQ9SWboaqwFsjn7G0diIbcToMZOz_kWx2pzXo_jJQZHZzPehp3vs2sD5lxOsbOaJfZjlwbM-OnvUv86DNLoU8F8YZdWO0i3Z7mNft8evxYPeeb1_XL6mGTm7LgY64UcBC1FrLlsiqxlkJDrRW2Wpu2kpzSVwBWVQRbK1CVxoBG2xYWCyUNv2Z3x9598N8TxbHpu2jIOT2Qn2IjJBellDKB4gia4GNyZpt96HodfhqE5s9l85ZcvtNhk1ymXdEcXabg4nRh2vbU_sdO8vgvfMpzaQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>67364777</pqid></control><display><type>article</type><title>Green-function-based monte carlo method for classical fields coupled to fermions</title><source>American Physical Society:Jisc Collections:APS Read and Publish 2023-2025 (reading list)</source><creator>Weisse, Alexander</creator><creatorcontrib>Weisse, Alexander</creatorcontrib><description>Microscopic models of classical degrees of freedom coupled to noninteracting fermions occur in many different contexts. Prominent examples from solid state physics are descriptions of colossal magnetoresistance manganites and diluted magnetic semiconductors, or auxiliary field methods for correlated electron systems. Monte Carlo simulations are vital for an understanding of such systems, but notorious for requiring the solution of the fermion problem with each change in the classical field configuration. We present an efficient, truncation-free O(N) method on the basis of Chebyshev expanded local Green functions, which allows us to simulate systems of unprecedented size N.</description><identifier>ISSN: 0031-9007</identifier><identifier>EISSN: 1079-7114</identifier><identifier>DOI: 10.1103/physrevlett.102.150604</identifier><identifier>PMID: 19518613</identifier><language>eng</language><publisher>United States</publisher><ispartof>Physical review letters, 2009-04, Vol.102 (15), p.150604-150604, Article 150604</ispartof><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c423t-9903068a67d37541876a08a91daacd573e10200f95e0bf6194cc0a1fd2f1297c3</citedby><cites>FETCH-LOGICAL-c423t-9903068a67d37541876a08a91daacd573e10200f95e0bf6194cc0a1fd2f1297c3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/19518613$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Weisse, Alexander</creatorcontrib><title>Green-function-based monte carlo method for classical fields coupled to fermions</title><title>Physical review letters</title><addtitle>Phys Rev Lett</addtitle><description>Microscopic models of classical degrees of freedom coupled to noninteracting fermions occur in many different contexts. Prominent examples from solid state physics are descriptions of colossal magnetoresistance manganites and diluted magnetic semiconductors, or auxiliary field methods for correlated electron systems. Monte Carlo simulations are vital for an understanding of such systems, but notorious for requiring the solution of the fermion problem with each change in the classical field configuration. We present an efficient, truncation-free O(N) method on the basis of Chebyshev expanded local Green functions, which allows us to simulate systems of unprecedented size N.</description><issn>0031-9007</issn><issn>1079-7114</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2009</creationdate><recordtype>article</recordtype><recordid>eNpFkF1LwzAUhoMobn78hdEr7zrPadqkuZShUxgootclS09YJW1m0g7890Y28OrA4Xnfw3kYWyAsEYHf73c_MdDB0TguEYolViCgPGNzBKlyiVieszkAx1wByBm7ivELALAQ9SWboaqwFsjn7G0diIbcToMZOz_kWx2pzXo_jJQZHZzPehp3vs2sD5lxOsbOaJfZjlwbM-OnvUv86DNLoU8F8YZdWO0i3Z7mNft8evxYPeeb1_XL6mGTm7LgY64UcBC1FrLlsiqxlkJDrRW2Wpu2kpzSVwBWVQRbK1CVxoBG2xYWCyUNv2Z3x9598N8TxbHpu2jIOT2Qn2IjJBellDKB4gia4GNyZpt96HodfhqE5s9l85ZcvtNhk1ymXdEcXabg4nRh2vbU_sdO8vgvfMpzaQ</recordid><startdate>20090417</startdate><enddate>20090417</enddate><creator>Weisse, Alexander</creator><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope></search><sort><creationdate>20090417</creationdate><title>Green-function-based monte carlo method for classical fields coupled to fermions</title><author>Weisse, Alexander</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c423t-9903068a67d37541876a08a91daacd573e10200f95e0bf6194cc0a1fd2f1297c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2009</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Weisse, Alexander</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Physical review letters</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Weisse, Alexander</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Green-function-based monte carlo method for classical fields coupled to fermions</atitle><jtitle>Physical review letters</jtitle><addtitle>Phys Rev Lett</addtitle><date>2009-04-17</date><risdate>2009</risdate><volume>102</volume><issue>15</issue><spage>150604</spage><epage>150604</epage><pages>150604-150604</pages><artnum>150604</artnum><issn>0031-9007</issn><eissn>1079-7114</eissn><abstract>Microscopic models of classical degrees of freedom coupled to noninteracting fermions occur in many different contexts. Prominent examples from solid state physics are descriptions of colossal magnetoresistance manganites and diluted magnetic semiconductors, or auxiliary field methods for correlated electron systems. Monte Carlo simulations are vital for an understanding of such systems, but notorious for requiring the solution of the fermion problem with each change in the classical field configuration. We present an efficient, truncation-free O(N) method on the basis of Chebyshev expanded local Green functions, which allows us to simulate systems of unprecedented size N.</abstract><cop>United States</cop><pmid>19518613</pmid><doi>10.1103/physrevlett.102.150604</doi><tpages>1</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0031-9007
ispartof Physical review letters, 2009-04, Vol.102 (15), p.150604-150604, Article 150604
issn 0031-9007
1079-7114
language eng
recordid cdi_proquest_miscellaneous_67364777
source American Physical Society:Jisc Collections:APS Read and Publish 2023-2025 (reading list)
title Green-function-based monte carlo method for classical fields coupled to fermions
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-07T20%3A51%3A47IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Green-function-based%20monte%20carlo%20method%20for%20classical%20fields%20coupled%20to%20fermions&rft.jtitle=Physical%20review%20letters&rft.au=Weisse,%20Alexander&rft.date=2009-04-17&rft.volume=102&rft.issue=15&rft.spage=150604&rft.epage=150604&rft.pages=150604-150604&rft.artnum=150604&rft.issn=0031-9007&rft.eissn=1079-7114&rft_id=info:doi/10.1103/physrevlett.102.150604&rft_dat=%3Cproquest_cross%3E67364777%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c423t-9903068a67d37541876a08a91daacd573e10200f95e0bf6194cc0a1fd2f1297c3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=67364777&rft_id=info:pmid/19518613&rfr_iscdi=true