Loading…
Green-function-based monte carlo method for classical fields coupled to fermions
Microscopic models of classical degrees of freedom coupled to noninteracting fermions occur in many different contexts. Prominent examples from solid state physics are descriptions of colossal magnetoresistance manganites and diluted magnetic semiconductors, or auxiliary field methods for correlated...
Saved in:
Published in: | Physical review letters 2009-04, Vol.102 (15), p.150604-150604, Article 150604 |
---|---|
Main Author: | |
Format: | Article |
Language: | English |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c423t-9903068a67d37541876a08a91daacd573e10200f95e0bf6194cc0a1fd2f1297c3 |
---|---|
cites | cdi_FETCH-LOGICAL-c423t-9903068a67d37541876a08a91daacd573e10200f95e0bf6194cc0a1fd2f1297c3 |
container_end_page | 150604 |
container_issue | 15 |
container_start_page | 150604 |
container_title | Physical review letters |
container_volume | 102 |
creator | Weisse, Alexander |
description | Microscopic models of classical degrees of freedom coupled to noninteracting fermions occur in many different contexts. Prominent examples from solid state physics are descriptions of colossal magnetoresistance manganites and diluted magnetic semiconductors, or auxiliary field methods for correlated electron systems. Monte Carlo simulations are vital for an understanding of such systems, but notorious for requiring the solution of the fermion problem with each change in the classical field configuration. We present an efficient, truncation-free O(N) method on the basis of Chebyshev expanded local Green functions, which allows us to simulate systems of unprecedented size N. |
doi_str_mv | 10.1103/physrevlett.102.150604 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_67364777</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>67364777</sourcerecordid><originalsourceid>FETCH-LOGICAL-c423t-9903068a67d37541876a08a91daacd573e10200f95e0bf6194cc0a1fd2f1297c3</originalsourceid><addsrcrecordid>eNpFkF1LwzAUhoMobn78hdEr7zrPadqkuZShUxgootclS09YJW1m0g7890Y28OrA4Xnfw3kYWyAsEYHf73c_MdDB0TguEYolViCgPGNzBKlyiVieszkAx1wByBm7ivELALAQ9SWboaqwFsjn7G0diIbcToMZOz_kWx2pzXo_jJQZHZzPehp3vs2sD5lxOsbOaJfZjlwbM-OnvUv86DNLoU8F8YZdWO0i3Z7mNft8evxYPeeb1_XL6mGTm7LgY64UcBC1FrLlsiqxlkJDrRW2Wpu2kpzSVwBWVQRbK1CVxoBG2xYWCyUNv2Z3x9598N8TxbHpu2jIOT2Qn2IjJBellDKB4gia4GNyZpt96HodfhqE5s9l85ZcvtNhk1ymXdEcXabg4nRh2vbU_sdO8vgvfMpzaQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>67364777</pqid></control><display><type>article</type><title>Green-function-based monte carlo method for classical fields coupled to fermions</title><source>American Physical Society:Jisc Collections:APS Read and Publish 2023-2025 (reading list)</source><creator>Weisse, Alexander</creator><creatorcontrib>Weisse, Alexander</creatorcontrib><description>Microscopic models of classical degrees of freedom coupled to noninteracting fermions occur in many different contexts. Prominent examples from solid state physics are descriptions of colossal magnetoresistance manganites and diluted magnetic semiconductors, or auxiliary field methods for correlated electron systems. Monte Carlo simulations are vital for an understanding of such systems, but notorious for requiring the solution of the fermion problem with each change in the classical field configuration. We present an efficient, truncation-free O(N) method on the basis of Chebyshev expanded local Green functions, which allows us to simulate systems of unprecedented size N.</description><identifier>ISSN: 0031-9007</identifier><identifier>EISSN: 1079-7114</identifier><identifier>DOI: 10.1103/physrevlett.102.150604</identifier><identifier>PMID: 19518613</identifier><language>eng</language><publisher>United States</publisher><ispartof>Physical review letters, 2009-04, Vol.102 (15), p.150604-150604, Article 150604</ispartof><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c423t-9903068a67d37541876a08a91daacd573e10200f95e0bf6194cc0a1fd2f1297c3</citedby><cites>FETCH-LOGICAL-c423t-9903068a67d37541876a08a91daacd573e10200f95e0bf6194cc0a1fd2f1297c3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/19518613$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Weisse, Alexander</creatorcontrib><title>Green-function-based monte carlo method for classical fields coupled to fermions</title><title>Physical review letters</title><addtitle>Phys Rev Lett</addtitle><description>Microscopic models of classical degrees of freedom coupled to noninteracting fermions occur in many different contexts. Prominent examples from solid state physics are descriptions of colossal magnetoresistance manganites and diluted magnetic semiconductors, or auxiliary field methods for correlated electron systems. Monte Carlo simulations are vital for an understanding of such systems, but notorious for requiring the solution of the fermion problem with each change in the classical field configuration. We present an efficient, truncation-free O(N) method on the basis of Chebyshev expanded local Green functions, which allows us to simulate systems of unprecedented size N.</description><issn>0031-9007</issn><issn>1079-7114</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2009</creationdate><recordtype>article</recordtype><recordid>eNpFkF1LwzAUhoMobn78hdEr7zrPadqkuZShUxgootclS09YJW1m0g7890Y28OrA4Xnfw3kYWyAsEYHf73c_MdDB0TguEYolViCgPGNzBKlyiVieszkAx1wByBm7ivELALAQ9SWboaqwFsjn7G0diIbcToMZOz_kWx2pzXo_jJQZHZzPehp3vs2sD5lxOsbOaJfZjlwbM-OnvUv86DNLoU8F8YZdWO0i3Z7mNft8evxYPeeb1_XL6mGTm7LgY64UcBC1FrLlsiqxlkJDrRW2Wpu2kpzSVwBWVQRbK1CVxoBG2xYWCyUNv2Z3x9598N8TxbHpu2jIOT2Qn2IjJBellDKB4gia4GNyZpt96HodfhqE5s9l85ZcvtNhk1ymXdEcXabg4nRh2vbU_sdO8vgvfMpzaQ</recordid><startdate>20090417</startdate><enddate>20090417</enddate><creator>Weisse, Alexander</creator><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope></search><sort><creationdate>20090417</creationdate><title>Green-function-based monte carlo method for classical fields coupled to fermions</title><author>Weisse, Alexander</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c423t-9903068a67d37541876a08a91daacd573e10200f95e0bf6194cc0a1fd2f1297c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2009</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Weisse, Alexander</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Physical review letters</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Weisse, Alexander</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Green-function-based monte carlo method for classical fields coupled to fermions</atitle><jtitle>Physical review letters</jtitle><addtitle>Phys Rev Lett</addtitle><date>2009-04-17</date><risdate>2009</risdate><volume>102</volume><issue>15</issue><spage>150604</spage><epage>150604</epage><pages>150604-150604</pages><artnum>150604</artnum><issn>0031-9007</issn><eissn>1079-7114</eissn><abstract>Microscopic models of classical degrees of freedom coupled to noninteracting fermions occur in many different contexts. Prominent examples from solid state physics are descriptions of colossal magnetoresistance manganites and diluted magnetic semiconductors, or auxiliary field methods for correlated electron systems. Monte Carlo simulations are vital for an understanding of such systems, but notorious for requiring the solution of the fermion problem with each change in the classical field configuration. We present an efficient, truncation-free O(N) method on the basis of Chebyshev expanded local Green functions, which allows us to simulate systems of unprecedented size N.</abstract><cop>United States</cop><pmid>19518613</pmid><doi>10.1103/physrevlett.102.150604</doi><tpages>1</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0031-9007 |
ispartof | Physical review letters, 2009-04, Vol.102 (15), p.150604-150604, Article 150604 |
issn | 0031-9007 1079-7114 |
language | eng |
recordid | cdi_proquest_miscellaneous_67364777 |
source | American Physical Society:Jisc Collections:APS Read and Publish 2023-2025 (reading list) |
title | Green-function-based monte carlo method for classical fields coupled to fermions |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-07T20%3A51%3A47IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Green-function-based%20monte%20carlo%20method%20for%20classical%20fields%20coupled%20to%20fermions&rft.jtitle=Physical%20review%20letters&rft.au=Weisse,%20Alexander&rft.date=2009-04-17&rft.volume=102&rft.issue=15&rft.spage=150604&rft.epage=150604&rft.pages=150604-150604&rft.artnum=150604&rft.issn=0031-9007&rft.eissn=1079-7114&rft_id=info:doi/10.1103/physrevlett.102.150604&rft_dat=%3Cproquest_cross%3E67364777%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c423t-9903068a67d37541876a08a91daacd573e10200f95e0bf6194cc0a1fd2f1297c3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=67364777&rft_id=info:pmid/19518613&rfr_iscdi=true |