Loading…
A rat model of slow Wallerian degeneration (WldS) with improved preservation of neuromuscular synapses
The slow Wallerian degeneration phenotype, WldS, which delays Wallerian degeneration and axon pathology for several weeks, has so far been studied only in mice. A rat model would have several advantages. First, rats model some human disorders better than mice. Second, the larger body size of rats fa...
Saved in:
Published in: | The European journal of neuroscience 2005-01, Vol.21 (1), p.271-277 |
---|---|
Main Authors: | , , , , , , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | The slow Wallerian degeneration phenotype, WldS, which delays Wallerian degeneration and axon pathology for several weeks, has so far been studied only in mice. A rat model would have several advantages. First, rats model some human disorders better than mice. Second, the larger body size of rats facilitates more complex surgical manipulations. Third, rats provide a greater yield of tissue for primary culture and biochemical investigations. We generated transgenic WldS rats expressing the Ube4b/Nmnat1 chimeric gene in the central and peripheral nervous system. As in WldS mice, their axons survive up to 3 weeks after transection and remain functional for at least 1 week. Protection of axotomized nerve terminals is stronger than in mice, particularly in one line, where 95–100% of neuromuscular junctions remained intact and functional after 5 days. Furthermore, the loss of synaptic phenotype with age was much less in rats than in mice. Thus, the slow Wallerian degeneration phenotype can be transferred to another mammalian species and synapses may be more effectively preserved after axotomy in species with longer axons. |
---|---|
ISSN: | 0953-816X 1460-9568 |
DOI: | 10.1111/j.1460-9568.2004.03833.x |