Loading…

Infrared consequence spectroscopy of gaseous protonated and metal ion cationized complexes

In this article, the new and exciting techniques of infrared consequence spectroscopy (sometimes called action spectroscopy) of gaseous ions are reviewed. These techniques include vibrational predissociation spectroscopy and infrared multiple photon dissociation spectroscopy and they typically compl...

Full description

Saved in:
Bibliographic Details
Published in:Mass spectrometry reviews 2009-07, Vol.28 (4), p.586-607
Main Author: Fridgen, Travis D.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:In this article, the new and exciting techniques of infrared consequence spectroscopy (sometimes called action spectroscopy) of gaseous ions are reviewed. These techniques include vibrational predissociation spectroscopy and infrared multiple photon dissociation spectroscopy and they typically complement one another in the systems studied and the information gained. In recent years infrared consequence spectroscopy has provided long‐awaited direct evidence into the structures of gaseous ions from organometallic species to strong ionic hydrogen bonded structures to large biomolecules. Much is being learned with respect to the structures of ions without their stabilizing solvent which can be used to better understand the effect of solvent on their structures. This review mainly covers the topics with which the author has been directly involved in research: structures of proton‐bound dimers, protonated amino acids and DNA bases, amino acid and DNA bases bound to metal ions and, more recently, solvated ionic complexes. It is hoped that this review reveals the impact that infrared consequence spectroscopy has had on the field of gaseous ion chemistry. © 2009 Wiley Periodicals, Inc., Mass Spec Rev 28:586–607, 2009
ISSN:0277-7037
1098-2787
DOI:10.1002/mas.20224