Loading…

The geometric theory of adaptive evolution: trade-off and invasion plots

The purpose of this paper is to take an entirely geometrical path to determine the evolutionary properties of ecological systems subject to trade-offs. In particular we classify evolutionary singularities in a geometrical fashion. To achieve this, we study trade-off and invasion plots (TIPs) which s...

Full description

Saved in:
Bibliographic Details
Published in:Journal of theoretical biology 2005-04, Vol.233 (3), p.363-377
Main Authors: Bowers, Roger G., Hoyle, Andrew, White, Andrew, Boots, Michael
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:The purpose of this paper is to take an entirely geometrical path to determine the evolutionary properties of ecological systems subject to trade-offs. In particular we classify evolutionary singularities in a geometrical fashion. To achieve this, we study trade-off and invasion plots (TIPs) which show graphically the outcome of evolution from the relationship between three curves. The first invasion boundary (curve) has one strain as resident and the other strain as putative invader and the second has the roles of the strains reversed. The parameter values for one strain are used as the origin with those of the second strain varying. The third curve represents the trade-off. All three curves pass through the origin or tip of the TIP. We show that at this point the invasion boundaries are tangential. At a singular TIP, in which the origin is an evolutionary singularity, the invasion boundaries and trade-off curve are all tangential. The curvature of the trade-off curve determines the region in which it enters the singular TIP. Each of these regions has particular evolutionary properties (EUS, CS, SPR and MI). Thus we determine by direct geometric argument conditions for each of these properties in terms of the relative curvatures of the trade-off curve and invasion boundaries. We show that these conditions are equivalent to the standard partial derivative conditions of adaptive dynamics. The significance of our results is that we can determine whether the singular strategy is an attractor, branching point, repellor, etc. simply by observing in which region the trade-off curve enters the singular TIP. In particular we find that, if and only if the TIP has a region of mutual invadability, is it possible for the singular strategy to be a branching point. We illustrate the theory with an example and point the way forward.
ISSN:0022-5193
1095-8541
DOI:10.1016/j.jtbi.2004.10.017