Loading…

Translational control of beta2-adrenergic receptor mRNA by T-cell-restricted intracellular antigen-related protein

Cellular expression of the beta(2)-adrenergic receptor (beta(2)-AR) is suppressed at the translational level by 3'-untranslated region (UTR) sequences. To test the possible role of 3'-UTR-binding proteins in translational suppression of beta(2)-AR mRNA, we expressed the full-length 3'...

Full description

Saved in:
Bibliographic Details
Published in:The Journal of biological chemistry 2005-01, Vol.280 (3), p.1931-1943
Main Authors: Kandasamy, Karthikeyan, Joseph, Kusumam, Subramaniam, Kothandharaman, Raymond, John R, Tholanikunnel, Baby G
Format: Article
Language:English
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Cellular expression of the beta(2)-adrenergic receptor (beta(2)-AR) is suppressed at the translational level by 3'-untranslated region (UTR) sequences. To test the possible role of 3'-UTR-binding proteins in translational suppression of beta(2)-AR mRNA, we expressed the full-length 3'-UTR or the adenylate/uridylate-rich (A+U-rich element (ARE)) RNA from the 3'-UTR sequences of beta(2)-AR in cell lines that endogenously express this receptor. Reversal of beta(2)-adrenergic receptor translational repression by retroviral expression of 3'-UTR sequences suggested that ARE RNA-binding proteins are involved in translational suppression of beta(2)-adrenergic receptor expression. Using a 20-nucleotide ARE RNA from the receptor 3'-UTR as an affinity ligand, we purified the proteins that bind to these sequences. T-cell-restricted intracellular antigen-related protein (TIAR) was one of the strongly bound proteins identified by this method. UV-catalyzed cross-linking experiments using in vitro transcribed 3'-UTR RNA and glutathione S-transferase-TIAR demonstrated multiple binding sites for this protein on beta(2)-AR 3'-UTR sequences. The distal 340-nucleotide region of the 3'-UTR was identified as a target RNA motif for TIAR binding by both RNA gel shift analysis and immunoprecipitation experiments. Overexpression of TIAR resulted in suppression of receptor protein synthesis and a significant shift in endogenously expressed beta(2)-AR mRNA toward low molecular weight fractions in sucrose gradient polysome fractionation. Taken together, our results provide the first evidence for translational control of beta(2)-AR mRNA by TIAR.
ISSN:0021-9258