Loading…
Wireless wearable controller for upper-limb neuroprosthesis
The objective of this project was to develop a wireless, wearable joint angle transducer to enable proportional control of an upper-limb neuroprosthesis by wrist position. Implanted neuroprostheses use functional electrical stimulation to provide hand grasp to individuals with tetraplegia. Wrist pos...
Saved in:
Published in: | Journal of rehabilitation research and development 2009-01, Vol.46 (2), p.243-256 |
---|---|
Main Authors: | , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | The objective of this project was to develop a wireless, wearable joint angle transducer to enable proportional control of an upper-limb neuroprosthesis by wrist position. Implanted neuroprostheses use functional electrical stimulation to provide hand grasp to individuals with tetraplegia. Wrist position is advantageous for control because it augments the tenodesis grasp and can be implemented bilaterally. Recently developed, fully implantable multichannel stimulators are battery-powered and use wireless telemetry to control stimulator outputs. An external wrist controller was designed for command signal acquisition for people with cervical-level spinal cord injury to control this implantable stimulator. The wearable controller, which uses gigantic magnetoresistive sensing techniques to measure wrist position, is worn on the forearm. A small dime-sized magnet is fixed to the back of the hand. Results indicate that the device is a feasible control method for an upper-limb neuroprosthesis and could be reduced to a small "wristwatch" size for cosmesis and easy donning. |
---|---|
ISSN: | 0748-7711 1938-1352 |
DOI: | 10.1682/JRRD.2008.03.0037 |