Loading…

A new mutation in the yeast aspartate kinase induces threonine accumulation in a temperature‐regulated way

In Saccharomyces cerevisiae, aspartate kinase (the HOM3 product) regulates the metabolic flux through the threonine biosynthetic pathway through feedback inhibition by the end product. In order to obtain a strain able to produce threonine in a controlled way, we have isolated a mutant allele (HOM3‐t...

Full description

Saved in:
Bibliographic Details
Published in:Yeast (Chichester, England) England), 2005-01, Vol.22 (2), p.99-110
Main Authors: Velasco, I., Arévalo‐Rodríguez, M., Marina, P., Calderón, I. L.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c3507-3844a0e18f9c0325a2f1a102d45eccf73a535f809ab3b70eb2efbf8538a679d63
cites cdi_FETCH-LOGICAL-c3507-3844a0e18f9c0325a2f1a102d45eccf73a535f809ab3b70eb2efbf8538a679d63
container_end_page 110
container_issue 2
container_start_page 99
container_title Yeast (Chichester, England)
container_volume 22
creator Velasco, I.
Arévalo‐Rodríguez, M.
Marina, P.
Calderón, I. L.
description In Saccharomyces cerevisiae, aspartate kinase (the HOM3 product) regulates the metabolic flux through the threonine biosynthetic pathway through feedback inhibition by the end product. In order to obtain a strain able to produce threonine in a controlled way, we have isolated a mutant allele (HOM3‐ts31d) that gives rise to a deregulated aspartate kinase. This allele has been isolated as an extragenic suppressor of ilv1, which confers an Ilv+ phenotype at 37 °C but not at 22 °C. We have stated that at high temperature the mutant aspartate kinase is slightly more deregulated and shows a higher specific activity, inducing threonine accumulation. The HOM3‐ts31d allele carries a mutation that leads to a Ser399 → Phe substitution in the postulated regulatory region of the enzyme. We have detected other changes in the nucleotide sequence but they are also present in the parental strain, reflecting the genetic differences between different wild‐type strains. A sequence comparison among all the reported mutant aspartate kinases suggests that not all residues involved in regulation of the activity are clustered in the so‐called regulatory domain, as is the case of that mutated in AK‐R7, another deregulated aspartate kinase obtained with the same strategy of ilv1 suppression. Copyright © 2005 John Wiley & Sons, Ltd.
doi_str_mv 10.1002/yea.1197
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_67397461</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>67397461</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3507-3844a0e18f9c0325a2f1a102d45eccf73a535f809ab3b70eb2efbf8538a679d63</originalsourceid><addsrcrecordid>eNqFkc1O4zAUhS0EouVH4gmQV4hNmOvYjuNlVRUYCWk2gwSr6Ma5gUB-ip2o6m4eYZ5xnoSUVrBCs7qL891vcQ5jZwKuBED8Y014JYQ1e2wqwJoIIBH7bApG2UiDfJiwoxBeAITQcXrIJkInSitjp6ye8ZZWvBl67Kuu5VXL-2fiozD0HMMS_RgQf61aDDSmxeAojIinrq1a4ujc0Az15zPynpoleewHT__-_PX0tEmp4Ctcn7CDEutAp7t7zO6vF7_nt9Hdr5uf89ld5KQGE8lUKQQSaWkdyFhjXAoUEBdKk3OlkailLlOwmMvcAOUxlXmZapliYmyRyGN2sfUuffc2UOizpgqO6hpb6oaQJUZaoxLxX1AYLW2i1AhebkHnuxA8ldnSVw36dSYg20yQjY1lmwlG9HznHPKGii9w1_kIRFtgVdW0_laUPS5mH8J3z1uSVw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>17539644</pqid></control><display><type>article</type><title>A new mutation in the yeast aspartate kinase induces threonine accumulation in a temperature‐regulated way</title><source>Wiley</source><creator>Velasco, I. ; Arévalo‐Rodríguez, M. ; Marina, P. ; Calderón, I. L.</creator><creatorcontrib>Velasco, I. ; Arévalo‐Rodríguez, M. ; Marina, P. ; Calderón, I. L.</creatorcontrib><description>In Saccharomyces cerevisiae, aspartate kinase (the HOM3 product) regulates the metabolic flux through the threonine biosynthetic pathway through feedback inhibition by the end product. In order to obtain a strain able to produce threonine in a controlled way, we have isolated a mutant allele (HOM3‐ts31d) that gives rise to a deregulated aspartate kinase. This allele has been isolated as an extragenic suppressor of ilv1, which confers an Ilv+ phenotype at 37 °C but not at 22 °C. We have stated that at high temperature the mutant aspartate kinase is slightly more deregulated and shows a higher specific activity, inducing threonine accumulation. The HOM3‐ts31d allele carries a mutation that leads to a Ser399 → Phe substitution in the postulated regulatory region of the enzyme. We have detected other changes in the nucleotide sequence but they are also present in the parental strain, reflecting the genetic differences between different wild‐type strains. A sequence comparison among all the reported mutant aspartate kinases suggests that not all residues involved in regulation of the activity are clustered in the so‐called regulatory domain, as is the case of that mutated in AK‐R7, another deregulated aspartate kinase obtained with the same strategy of ilv1 suppression. Copyright © 2005 John Wiley &amp; Sons, Ltd.</description><identifier>ISSN: 0749-503X</identifier><identifier>EISSN: 1097-0061</identifier><identifier>DOI: 10.1002/yea.1197</identifier><identifier>PMID: 15645479</identifier><language>eng</language><publisher>Chichester, UK: John Wiley &amp; Sons, Ltd</publisher><subject>ACT domain ; Amino Acid Sequence ; Aspartate Kinase - genetics ; Aspartate Kinase - metabolism ; aspartokinase ; Base Sequence ; Feedback, Physiological - physiology ; feedback‐insensitive ; FKBP12 ; Gene Expression Regulation, Fungal - physiology ; Isoleucine - metabolism ; Molecular Sequence Data ; Point Mutation ; Saccharomyces cerevisiae ; Saccharomyces cerevisiae - enzymology ; Saccharomyces cerevisiae - genetics ; Saccharomyces cerevisiae - metabolism ; Sequence Alignment ; Sequence Analysis, DNA ; Suppression, Genetic - physiology ; Temperature ; temperature‐dependent overproduction ; Threonine - metabolism ; threonine production</subject><ispartof>Yeast (Chichester, England), 2005-01, Vol.22 (2), p.99-110</ispartof><rights>Copyright © 2005 John Wiley &amp; Sons, Ltd.</rights><rights>Copyright (c) 2005 John Wiley &amp; Sons, Ltd.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3507-3844a0e18f9c0325a2f1a102d45eccf73a535f809ab3b70eb2efbf8538a679d63</citedby><cites>FETCH-LOGICAL-c3507-3844a0e18f9c0325a2f1a102d45eccf73a535f809ab3b70eb2efbf8538a679d63</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/15645479$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Velasco, I.</creatorcontrib><creatorcontrib>Arévalo‐Rodríguez, M.</creatorcontrib><creatorcontrib>Marina, P.</creatorcontrib><creatorcontrib>Calderón, I. L.</creatorcontrib><title>A new mutation in the yeast aspartate kinase induces threonine accumulation in a temperature‐regulated way</title><title>Yeast (Chichester, England)</title><addtitle>Yeast</addtitle><description>In Saccharomyces cerevisiae, aspartate kinase (the HOM3 product) regulates the metabolic flux through the threonine biosynthetic pathway through feedback inhibition by the end product. In order to obtain a strain able to produce threonine in a controlled way, we have isolated a mutant allele (HOM3‐ts31d) that gives rise to a deregulated aspartate kinase. This allele has been isolated as an extragenic suppressor of ilv1, which confers an Ilv+ phenotype at 37 °C but not at 22 °C. We have stated that at high temperature the mutant aspartate kinase is slightly more deregulated and shows a higher specific activity, inducing threonine accumulation. The HOM3‐ts31d allele carries a mutation that leads to a Ser399 → Phe substitution in the postulated regulatory region of the enzyme. We have detected other changes in the nucleotide sequence but they are also present in the parental strain, reflecting the genetic differences between different wild‐type strains. A sequence comparison among all the reported mutant aspartate kinases suggests that not all residues involved in regulation of the activity are clustered in the so‐called regulatory domain, as is the case of that mutated in AK‐R7, another deregulated aspartate kinase obtained with the same strategy of ilv1 suppression. Copyright © 2005 John Wiley &amp; Sons, Ltd.</description><subject>ACT domain</subject><subject>Amino Acid Sequence</subject><subject>Aspartate Kinase - genetics</subject><subject>Aspartate Kinase - metabolism</subject><subject>aspartokinase</subject><subject>Base Sequence</subject><subject>Feedback, Physiological - physiology</subject><subject>feedback‐insensitive</subject><subject>FKBP12</subject><subject>Gene Expression Regulation, Fungal - physiology</subject><subject>Isoleucine - metabolism</subject><subject>Molecular Sequence Data</subject><subject>Point Mutation</subject><subject>Saccharomyces cerevisiae</subject><subject>Saccharomyces cerevisiae - enzymology</subject><subject>Saccharomyces cerevisiae - genetics</subject><subject>Saccharomyces cerevisiae - metabolism</subject><subject>Sequence Alignment</subject><subject>Sequence Analysis, DNA</subject><subject>Suppression, Genetic - physiology</subject><subject>Temperature</subject><subject>temperature‐dependent overproduction</subject><subject>Threonine - metabolism</subject><subject>threonine production</subject><issn>0749-503X</issn><issn>1097-0061</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2005</creationdate><recordtype>article</recordtype><recordid>eNqFkc1O4zAUhS0EouVH4gmQV4hNmOvYjuNlVRUYCWk2gwSr6Ma5gUB-ip2o6m4eYZ5xnoSUVrBCs7qL891vcQ5jZwKuBED8Y014JYQ1e2wqwJoIIBH7bApG2UiDfJiwoxBeAITQcXrIJkInSitjp6ye8ZZWvBl67Kuu5VXL-2fiozD0HMMS_RgQf61aDDSmxeAojIinrq1a4ujc0Az15zPynpoleewHT__-_PX0tEmp4Ctcn7CDEutAp7t7zO6vF7_nt9Hdr5uf89ld5KQGE8lUKQQSaWkdyFhjXAoUEBdKk3OlkailLlOwmMvcAOUxlXmZapliYmyRyGN2sfUuffc2UOizpgqO6hpb6oaQJUZaoxLxX1AYLW2i1AhebkHnuxA8ldnSVw36dSYg20yQjY1lmwlG9HznHPKGii9w1_kIRFtgVdW0_laUPS5mH8J3z1uSVw</recordid><startdate>20050130</startdate><enddate>20050130</enddate><creator>Velasco, I.</creator><creator>Arévalo‐Rodríguez, M.</creator><creator>Marina, P.</creator><creator>Calderón, I. L.</creator><general>John Wiley &amp; Sons, Ltd</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>8FD</scope><scope>FR3</scope><scope>M7N</scope><scope>P64</scope><scope>RC3</scope><scope>7X8</scope></search><sort><creationdate>20050130</creationdate><title>A new mutation in the yeast aspartate kinase induces threonine accumulation in a temperature‐regulated way</title><author>Velasco, I. ; Arévalo‐Rodríguez, M. ; Marina, P. ; Calderón, I. L.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3507-3844a0e18f9c0325a2f1a102d45eccf73a535f809ab3b70eb2efbf8538a679d63</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2005</creationdate><topic>ACT domain</topic><topic>Amino Acid Sequence</topic><topic>Aspartate Kinase - genetics</topic><topic>Aspartate Kinase - metabolism</topic><topic>aspartokinase</topic><topic>Base Sequence</topic><topic>Feedback, Physiological - physiology</topic><topic>feedback‐insensitive</topic><topic>FKBP12</topic><topic>Gene Expression Regulation, Fungal - physiology</topic><topic>Isoleucine - metabolism</topic><topic>Molecular Sequence Data</topic><topic>Point Mutation</topic><topic>Saccharomyces cerevisiae</topic><topic>Saccharomyces cerevisiae - enzymology</topic><topic>Saccharomyces cerevisiae - genetics</topic><topic>Saccharomyces cerevisiae - metabolism</topic><topic>Sequence Alignment</topic><topic>Sequence Analysis, DNA</topic><topic>Suppression, Genetic - physiology</topic><topic>Temperature</topic><topic>temperature‐dependent overproduction</topic><topic>Threonine - metabolism</topic><topic>threonine production</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Velasco, I.</creatorcontrib><creatorcontrib>Arévalo‐Rodríguez, M.</creatorcontrib><creatorcontrib>Marina, P.</creatorcontrib><creatorcontrib>Calderón, I. L.</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>Yeast (Chichester, England)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Velasco, I.</au><au>Arévalo‐Rodríguez, M.</au><au>Marina, P.</au><au>Calderón, I. L.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A new mutation in the yeast aspartate kinase induces threonine accumulation in a temperature‐regulated way</atitle><jtitle>Yeast (Chichester, England)</jtitle><addtitle>Yeast</addtitle><date>2005-01-30</date><risdate>2005</risdate><volume>22</volume><issue>2</issue><spage>99</spage><epage>110</epage><pages>99-110</pages><issn>0749-503X</issn><eissn>1097-0061</eissn><abstract>In Saccharomyces cerevisiae, aspartate kinase (the HOM3 product) regulates the metabolic flux through the threonine biosynthetic pathway through feedback inhibition by the end product. In order to obtain a strain able to produce threonine in a controlled way, we have isolated a mutant allele (HOM3‐ts31d) that gives rise to a deregulated aspartate kinase. This allele has been isolated as an extragenic suppressor of ilv1, which confers an Ilv+ phenotype at 37 °C but not at 22 °C. We have stated that at high temperature the mutant aspartate kinase is slightly more deregulated and shows a higher specific activity, inducing threonine accumulation. The HOM3‐ts31d allele carries a mutation that leads to a Ser399 → Phe substitution in the postulated regulatory region of the enzyme. We have detected other changes in the nucleotide sequence but they are also present in the parental strain, reflecting the genetic differences between different wild‐type strains. A sequence comparison among all the reported mutant aspartate kinases suggests that not all residues involved in regulation of the activity are clustered in the so‐called regulatory domain, as is the case of that mutated in AK‐R7, another deregulated aspartate kinase obtained with the same strategy of ilv1 suppression. Copyright © 2005 John Wiley &amp; Sons, Ltd.</abstract><cop>Chichester, UK</cop><pub>John Wiley &amp; Sons, Ltd</pub><pmid>15645479</pmid><doi>10.1002/yea.1197</doi><tpages>12</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0749-503X
ispartof Yeast (Chichester, England), 2005-01, Vol.22 (2), p.99-110
issn 0749-503X
1097-0061
language eng
recordid cdi_proquest_miscellaneous_67397461
source Wiley
subjects ACT domain
Amino Acid Sequence
Aspartate Kinase - genetics
Aspartate Kinase - metabolism
aspartokinase
Base Sequence
Feedback, Physiological - physiology
feedback‐insensitive
FKBP12
Gene Expression Regulation, Fungal - physiology
Isoleucine - metabolism
Molecular Sequence Data
Point Mutation
Saccharomyces cerevisiae
Saccharomyces cerevisiae - enzymology
Saccharomyces cerevisiae - genetics
Saccharomyces cerevisiae - metabolism
Sequence Alignment
Sequence Analysis, DNA
Suppression, Genetic - physiology
Temperature
temperature‐dependent overproduction
Threonine - metabolism
threonine production
title A new mutation in the yeast aspartate kinase induces threonine accumulation in a temperature‐regulated way
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-07T11%3A19%3A37IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20new%20mutation%20in%20the%20yeast%20aspartate%20kinase%20induces%20threonine%20accumulation%20in%20a%20temperature%E2%80%90regulated%20way&rft.jtitle=Yeast%20(Chichester,%20England)&rft.au=Velasco,%20I.&rft.date=2005-01-30&rft.volume=22&rft.issue=2&rft.spage=99&rft.epage=110&rft.pages=99-110&rft.issn=0749-503X&rft.eissn=1097-0061&rft_id=info:doi/10.1002/yea.1197&rft_dat=%3Cproquest_cross%3E67397461%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c3507-3844a0e18f9c0325a2f1a102d45eccf73a535f809ab3b70eb2efbf8538a679d63%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=17539644&rft_id=info:pmid/15645479&rfr_iscdi=true