Loading…
Effect of Adsorbed Polyelectrolytes on Nanoscale Zero Valent Iron Particle Attachment to Soil Surface Models
Polyelectrolyte coatings significantly increase the mobility of nanoscale zerovalent iron (NZVI) in saturated porous media. The effect can be attributed to improved colloidal stability of NZVI suspensions, decreased adhesion to soil surfaces, or a combination of the two effects. This research explic...
Saved in:
Published in: | Environmental science & technology 2009-05, Vol.43 (10), p.3803-3808 |
---|---|
Main Authors: | , , , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-a370t-f1b80dce9d9f3620f7a8a412b817162e04d068a5c2702e644f1a1d46e8c75eba3 |
---|---|
cites | cdi_FETCH-LOGICAL-a370t-f1b80dce9d9f3620f7a8a412b817162e04d068a5c2702e644f1a1d46e8c75eba3 |
container_end_page | 3808 |
container_issue | 10 |
container_start_page | 3803 |
container_title | Environmental science & technology |
container_volume | 43 |
creator | Sirk, Kevin M Saleh, Navid B Phenrat, Tanapon Kim, Hye-Jin Dufour, Bruno Ok, Jeongbin Golas, Patricia L Matyjaszewski, Krzysztof Lowry, Gregory V Tilton, Robert D |
description | Polyelectrolyte coatings significantly increase the mobility of nanoscale zerovalent iron (NZVI) in saturated porous media. The effect can be attributed to improved colloidal stability of NZVI suspensions, decreased adhesion to soil surfaces, or a combination of the two effects. This research explicitly examines how coatings control NZVI adhesion to model soil surfaces. NZVI was coated with three different polyelectrolyte block copolymers based on poly(methacrylic acid), poly(methyl methacrylate or butyl methacrylate), and poly(styrenesulfonate) or with a poly(styrenesulfonate) homopolymer. SiO2 and a humic acid film served as model soil surfaces. The polyelectrolytes increased the magnitude of the electrophoretic mobility of NZVI over a broad pH range relative to unmodified NZVI and shifted the isoelectric point outside the typical groundwater pH range. Quartz crystal microgravimetry measurements indicated extensive adhesion of unmodified NZVI to SiO2. Polyelectrolyte coatings decreased adhesion by approximately 3 orders of magnitude. Adding 50 mM NaCl to screen electrostatic repulsions did not significantly increase adhesion of modified NZVI. Coated NZVI did not adhere to humic acid films for either 1 mM NaHCO3 or 1 mM NaHCO3 + 50 mM NaCl. The lack of adhesion even in a high ionic strength medium was attributed to electrosteric repulsion, as opposed to electrostatic double layer repulsion, between the polyelectrolyte-coated NZVI and the negatively charged surfaces. The lack of significant adhesion on either model surface was observed for all polymer architectures investigated. |
doi_str_mv | 10.1021/es803589t |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_67402125</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>67402125</sourcerecordid><originalsourceid>FETCH-LOGICAL-a370t-f1b80dce9d9f3620f7a8a412b817162e04d068a5c2702e644f1a1d46e8c75eba3</originalsourceid><addsrcrecordid>eNplkEFrFTEQx4NY7LP14BeQICj0sDrJJrvZ46NULVQttIp4WWazE9ySt2mT7KHf3jz66IP2NMP8f8wMP8beCvgkQIrPlAzU2nT5BVsJLaHSRouXbAUg6qqrmz-H7HVKNwAgazCv2KHotFKmEyvmz5wjm3lwfD2mEAca-WXw9-TLNJYmU-Jh5j9wDsmiJ_6XYuC_Szdnfh5LdIkxT7Yk65zR_ttsgxz4VZg8v1qiQ0v8exjJp2N24NAnerOrR-zXl7Pr02_Vxc-v56friwrrFnLlxGBgtNSNnasbCa5Fg0rIwYhWNJJAjdAY1Fa2IKlRygkUo2rI2FbTgPUR-_iw9zaGu4VS7jdTsuQ9zhSW1DetKtqkLuD7J-BNWOJcfuuLKaFVK5sCnTxANoaUIrn-Nk4bjPe9gH7rv3_0X9h3u4XLsKFxT-6EF-DDDsCtThdxtlN65KTQAIXdc2jT_qnnB_8DLXmY5w</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>230154726</pqid></control><display><type>article</type><title>Effect of Adsorbed Polyelectrolytes on Nanoscale Zero Valent Iron Particle Attachment to Soil Surface Models</title><source>American Chemical Society:Jisc Collections:American Chemical Society Read & Publish Agreement 2022-2024 (Reading list)</source><creator>Sirk, Kevin M ; Saleh, Navid B ; Phenrat, Tanapon ; Kim, Hye-Jin ; Dufour, Bruno ; Ok, Jeongbin ; Golas, Patricia L ; Matyjaszewski, Krzysztof ; Lowry, Gregory V ; Tilton, Robert D</creator><creatorcontrib>Sirk, Kevin M ; Saleh, Navid B ; Phenrat, Tanapon ; Kim, Hye-Jin ; Dufour, Bruno ; Ok, Jeongbin ; Golas, Patricia L ; Matyjaszewski, Krzysztof ; Lowry, Gregory V ; Tilton, Robert D</creatorcontrib><description>Polyelectrolyte coatings significantly increase the mobility of nanoscale zerovalent iron (NZVI) in saturated porous media. The effect can be attributed to improved colloidal stability of NZVI suspensions, decreased adhesion to soil surfaces, or a combination of the two effects. This research explicitly examines how coatings control NZVI adhesion to model soil surfaces. NZVI was coated with three different polyelectrolyte block copolymers based on poly(methacrylic acid), poly(methyl methacrylate or butyl methacrylate), and poly(styrenesulfonate) or with a poly(styrenesulfonate) homopolymer. SiO2 and a humic acid film served as model soil surfaces. The polyelectrolytes increased the magnitude of the electrophoretic mobility of NZVI over a broad pH range relative to unmodified NZVI and shifted the isoelectric point outside the typical groundwater pH range. Quartz crystal microgravimetry measurements indicated extensive adhesion of unmodified NZVI to SiO2. Polyelectrolyte coatings decreased adhesion by approximately 3 orders of magnitude. Adding 50 mM NaCl to screen electrostatic repulsions did not significantly increase adhesion of modified NZVI. Coated NZVI did not adhere to humic acid films for either 1 mM NaHCO3 or 1 mM NaHCO3 + 50 mM NaCl. The lack of adhesion even in a high ionic strength medium was attributed to electrosteric repulsion, as opposed to electrostatic double layer repulsion, between the polyelectrolyte-coated NZVI and the negatively charged surfaces. The lack of significant adhesion on either model surface was observed for all polymer architectures investigated.</description><identifier>ISSN: 0013-936X</identifier><identifier>EISSN: 1520-5851</identifier><identifier>DOI: 10.1021/es803589t</identifier><identifier>PMID: 19544891</identifier><identifier>CODEN: ESTHAG</identifier><language>eng</language><publisher>Washington, DC: American Chemical Society</publisher><subject>Adhesiveness ; Adsorption ; Applied sciences ; Copolymers ; Crystallization ; Effects ; Electrolytes ; Electrophoresis ; Electrostatics ; Exact sciences and technology ; Humic Substances ; Hydrogen-Ion Concentration ; Iron - chemistry ; Models, Chemical ; Nanoparticles - chemistry ; Pollution ; Polyamines - chemistry ; Polymers - chemistry ; Polymethacrylic Acids - chemistry ; Quartz ; Quartz - chemistry ; Remediation and Control Technologies ; Silicon Dioxide - chemistry ; Soil ; Soils ; Surface Properties ; Temperature ; Time Factors</subject><ispartof>Environmental science & technology, 2009-05, Vol.43 (10), p.3803-3808</ispartof><rights>Copyright © 2009 American Chemical Society</rights><rights>2009 INIST-CNRS</rights><rights>Copyright American Chemical Society May 15, 2009</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a370t-f1b80dce9d9f3620f7a8a412b817162e04d068a5c2702e644f1a1d46e8c75eba3</citedby><cites>FETCH-LOGICAL-a370t-f1b80dce9d9f3620f7a8a412b817162e04d068a5c2702e644f1a1d46e8c75eba3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=21500954$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/19544891$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Sirk, Kevin M</creatorcontrib><creatorcontrib>Saleh, Navid B</creatorcontrib><creatorcontrib>Phenrat, Tanapon</creatorcontrib><creatorcontrib>Kim, Hye-Jin</creatorcontrib><creatorcontrib>Dufour, Bruno</creatorcontrib><creatorcontrib>Ok, Jeongbin</creatorcontrib><creatorcontrib>Golas, Patricia L</creatorcontrib><creatorcontrib>Matyjaszewski, Krzysztof</creatorcontrib><creatorcontrib>Lowry, Gregory V</creatorcontrib><creatorcontrib>Tilton, Robert D</creatorcontrib><title>Effect of Adsorbed Polyelectrolytes on Nanoscale Zero Valent Iron Particle Attachment to Soil Surface Models</title><title>Environmental science & technology</title><addtitle>Environ. Sci. Technol</addtitle><description>Polyelectrolyte coatings significantly increase the mobility of nanoscale zerovalent iron (NZVI) in saturated porous media. The effect can be attributed to improved colloidal stability of NZVI suspensions, decreased adhesion to soil surfaces, or a combination of the two effects. This research explicitly examines how coatings control NZVI adhesion to model soil surfaces. NZVI was coated with three different polyelectrolyte block copolymers based on poly(methacrylic acid), poly(methyl methacrylate or butyl methacrylate), and poly(styrenesulfonate) or with a poly(styrenesulfonate) homopolymer. SiO2 and a humic acid film served as model soil surfaces. The polyelectrolytes increased the magnitude of the electrophoretic mobility of NZVI over a broad pH range relative to unmodified NZVI and shifted the isoelectric point outside the typical groundwater pH range. Quartz crystal microgravimetry measurements indicated extensive adhesion of unmodified NZVI to SiO2. Polyelectrolyte coatings decreased adhesion by approximately 3 orders of magnitude. Adding 50 mM NaCl to screen electrostatic repulsions did not significantly increase adhesion of modified NZVI. Coated NZVI did not adhere to humic acid films for either 1 mM NaHCO3 or 1 mM NaHCO3 + 50 mM NaCl. The lack of adhesion even in a high ionic strength medium was attributed to electrosteric repulsion, as opposed to electrostatic double layer repulsion, between the polyelectrolyte-coated NZVI and the negatively charged surfaces. The lack of significant adhesion on either model surface was observed for all polymer architectures investigated.</description><subject>Adhesiveness</subject><subject>Adsorption</subject><subject>Applied sciences</subject><subject>Copolymers</subject><subject>Crystallization</subject><subject>Effects</subject><subject>Electrolytes</subject><subject>Electrophoresis</subject><subject>Electrostatics</subject><subject>Exact sciences and technology</subject><subject>Humic Substances</subject><subject>Hydrogen-Ion Concentration</subject><subject>Iron - chemistry</subject><subject>Models, Chemical</subject><subject>Nanoparticles - chemistry</subject><subject>Pollution</subject><subject>Polyamines - chemistry</subject><subject>Polymers - chemistry</subject><subject>Polymethacrylic Acids - chemistry</subject><subject>Quartz</subject><subject>Quartz - chemistry</subject><subject>Remediation and Control Technologies</subject><subject>Silicon Dioxide - chemistry</subject><subject>Soil</subject><subject>Soils</subject><subject>Surface Properties</subject><subject>Temperature</subject><subject>Time Factors</subject><issn>0013-936X</issn><issn>1520-5851</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2009</creationdate><recordtype>article</recordtype><recordid>eNplkEFrFTEQx4NY7LP14BeQICj0sDrJJrvZ46NULVQttIp4WWazE9ySt2mT7KHf3jz66IP2NMP8f8wMP8beCvgkQIrPlAzU2nT5BVsJLaHSRouXbAUg6qqrmz-H7HVKNwAgazCv2KHotFKmEyvmz5wjm3lwfD2mEAca-WXw9-TLNJYmU-Jh5j9wDsmiJ_6XYuC_Szdnfh5LdIkxT7Yk65zR_ttsgxz4VZg8v1qiQ0v8exjJp2N24NAnerOrR-zXl7Pr02_Vxc-v56friwrrFnLlxGBgtNSNnasbCa5Fg0rIwYhWNJJAjdAY1Fa2IKlRygkUo2rI2FbTgPUR-_iw9zaGu4VS7jdTsuQ9zhSW1DetKtqkLuD7J-BNWOJcfuuLKaFVK5sCnTxANoaUIrn-Nk4bjPe9gH7rv3_0X9h3u4XLsKFxT-6EF-DDDsCtThdxtlN65KTQAIXdc2jT_qnnB_8DLXmY5w</recordid><startdate>20090515</startdate><enddate>20090515</enddate><creator>Sirk, Kevin M</creator><creator>Saleh, Navid B</creator><creator>Phenrat, Tanapon</creator><creator>Kim, Hye-Jin</creator><creator>Dufour, Bruno</creator><creator>Ok, Jeongbin</creator><creator>Golas, Patricia L</creator><creator>Matyjaszewski, Krzysztof</creator><creator>Lowry, Gregory V</creator><creator>Tilton, Robert D</creator><general>American Chemical Society</general><scope>IQODW</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QO</scope><scope>7ST</scope><scope>7T7</scope><scope>7U7</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>P64</scope><scope>SOI</scope><scope>7X8</scope></search><sort><creationdate>20090515</creationdate><title>Effect of Adsorbed Polyelectrolytes on Nanoscale Zero Valent Iron Particle Attachment to Soil Surface Models</title><author>Sirk, Kevin M ; Saleh, Navid B ; Phenrat, Tanapon ; Kim, Hye-Jin ; Dufour, Bruno ; Ok, Jeongbin ; Golas, Patricia L ; Matyjaszewski, Krzysztof ; Lowry, Gregory V ; Tilton, Robert D</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a370t-f1b80dce9d9f3620f7a8a412b817162e04d068a5c2702e644f1a1d46e8c75eba3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2009</creationdate><topic>Adhesiveness</topic><topic>Adsorption</topic><topic>Applied sciences</topic><topic>Copolymers</topic><topic>Crystallization</topic><topic>Effects</topic><topic>Electrolytes</topic><topic>Electrophoresis</topic><topic>Electrostatics</topic><topic>Exact sciences and technology</topic><topic>Humic Substances</topic><topic>Hydrogen-Ion Concentration</topic><topic>Iron - chemistry</topic><topic>Models, Chemical</topic><topic>Nanoparticles - chemistry</topic><topic>Pollution</topic><topic>Polyamines - chemistry</topic><topic>Polymers - chemistry</topic><topic>Polymethacrylic Acids - chemistry</topic><topic>Quartz</topic><topic>Quartz - chemistry</topic><topic>Remediation and Control Technologies</topic><topic>Silicon Dioxide - chemistry</topic><topic>Soil</topic><topic>Soils</topic><topic>Surface Properties</topic><topic>Temperature</topic><topic>Time Factors</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Sirk, Kevin M</creatorcontrib><creatorcontrib>Saleh, Navid B</creatorcontrib><creatorcontrib>Phenrat, Tanapon</creatorcontrib><creatorcontrib>Kim, Hye-Jin</creatorcontrib><creatorcontrib>Dufour, Bruno</creatorcontrib><creatorcontrib>Ok, Jeongbin</creatorcontrib><creatorcontrib>Golas, Patricia L</creatorcontrib><creatorcontrib>Matyjaszewski, Krzysztof</creatorcontrib><creatorcontrib>Lowry, Gregory V</creatorcontrib><creatorcontrib>Tilton, Robert D</creatorcontrib><collection>Pascal-Francis</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Biotechnology Research Abstracts</collection><collection>Environment Abstracts</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Toxicology Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Environment Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>Environmental science & technology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Sirk, Kevin M</au><au>Saleh, Navid B</au><au>Phenrat, Tanapon</au><au>Kim, Hye-Jin</au><au>Dufour, Bruno</au><au>Ok, Jeongbin</au><au>Golas, Patricia L</au><au>Matyjaszewski, Krzysztof</au><au>Lowry, Gregory V</au><au>Tilton, Robert D</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Effect of Adsorbed Polyelectrolytes on Nanoscale Zero Valent Iron Particle Attachment to Soil Surface Models</atitle><jtitle>Environmental science & technology</jtitle><addtitle>Environ. Sci. Technol</addtitle><date>2009-05-15</date><risdate>2009</risdate><volume>43</volume><issue>10</issue><spage>3803</spage><epage>3808</epage><pages>3803-3808</pages><issn>0013-936X</issn><eissn>1520-5851</eissn><coden>ESTHAG</coden><abstract>Polyelectrolyte coatings significantly increase the mobility of nanoscale zerovalent iron (NZVI) in saturated porous media. The effect can be attributed to improved colloidal stability of NZVI suspensions, decreased adhesion to soil surfaces, or a combination of the two effects. This research explicitly examines how coatings control NZVI adhesion to model soil surfaces. NZVI was coated with three different polyelectrolyte block copolymers based on poly(methacrylic acid), poly(methyl methacrylate or butyl methacrylate), and poly(styrenesulfonate) or with a poly(styrenesulfonate) homopolymer. SiO2 and a humic acid film served as model soil surfaces. The polyelectrolytes increased the magnitude of the electrophoretic mobility of NZVI over a broad pH range relative to unmodified NZVI and shifted the isoelectric point outside the typical groundwater pH range. Quartz crystal microgravimetry measurements indicated extensive adhesion of unmodified NZVI to SiO2. Polyelectrolyte coatings decreased adhesion by approximately 3 orders of magnitude. Adding 50 mM NaCl to screen electrostatic repulsions did not significantly increase adhesion of modified NZVI. Coated NZVI did not adhere to humic acid films for either 1 mM NaHCO3 or 1 mM NaHCO3 + 50 mM NaCl. The lack of adhesion even in a high ionic strength medium was attributed to electrosteric repulsion, as opposed to electrostatic double layer repulsion, between the polyelectrolyte-coated NZVI and the negatively charged surfaces. The lack of significant adhesion on either model surface was observed for all polymer architectures investigated.</abstract><cop>Washington, DC</cop><pub>American Chemical Society</pub><pmid>19544891</pmid><doi>10.1021/es803589t</doi><tpages>6</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0013-936X |
ispartof | Environmental science & technology, 2009-05, Vol.43 (10), p.3803-3808 |
issn | 0013-936X 1520-5851 |
language | eng |
recordid | cdi_proquest_miscellaneous_67402125 |
source | American Chemical Society:Jisc Collections:American Chemical Society Read & Publish Agreement 2022-2024 (Reading list) |
subjects | Adhesiveness Adsorption Applied sciences Copolymers Crystallization Effects Electrolytes Electrophoresis Electrostatics Exact sciences and technology Humic Substances Hydrogen-Ion Concentration Iron - chemistry Models, Chemical Nanoparticles - chemistry Pollution Polyamines - chemistry Polymers - chemistry Polymethacrylic Acids - chemistry Quartz Quartz - chemistry Remediation and Control Technologies Silicon Dioxide - chemistry Soil Soils Surface Properties Temperature Time Factors |
title | Effect of Adsorbed Polyelectrolytes on Nanoscale Zero Valent Iron Particle Attachment to Soil Surface Models |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-06T19%3A28%3A19IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Effect%20of%20Adsorbed%20Polyelectrolytes%20on%20Nanoscale%20Zero%20Valent%20Iron%20Particle%20Attachment%20to%20Soil%20Surface%20Models&rft.jtitle=Environmental%20science%20&%20technology&rft.au=Sirk,%20Kevin%20M&rft.date=2009-05-15&rft.volume=43&rft.issue=10&rft.spage=3803&rft.epage=3808&rft.pages=3803-3808&rft.issn=0013-936X&rft.eissn=1520-5851&rft.coden=ESTHAG&rft_id=info:doi/10.1021/es803589t&rft_dat=%3Cproquest_cross%3E67402125%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-a370t-f1b80dce9d9f3620f7a8a412b817162e04d068a5c2702e644f1a1d46e8c75eba3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=230154726&rft_id=info:pmid/19544891&rfr_iscdi=true |