Loading…

Effect of Adsorbed Polyelectrolytes on Nanoscale Zero Valent Iron Particle Attachment to Soil Surface Models

Polyelectrolyte coatings significantly increase the mobility of nanoscale zerovalent iron (NZVI) in saturated porous media. The effect can be attributed to improved colloidal stability of NZVI suspensions, decreased adhesion to soil surfaces, or a combination of the two effects. This research explic...

Full description

Saved in:
Bibliographic Details
Published in:Environmental science & technology 2009-05, Vol.43 (10), p.3803-3808
Main Authors: Sirk, Kevin M, Saleh, Navid B, Phenrat, Tanapon, Kim, Hye-Jin, Dufour, Bruno, Ok, Jeongbin, Golas, Patricia L, Matyjaszewski, Krzysztof, Lowry, Gregory V, Tilton, Robert D
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-a370t-f1b80dce9d9f3620f7a8a412b817162e04d068a5c2702e644f1a1d46e8c75eba3
cites cdi_FETCH-LOGICAL-a370t-f1b80dce9d9f3620f7a8a412b817162e04d068a5c2702e644f1a1d46e8c75eba3
container_end_page 3808
container_issue 10
container_start_page 3803
container_title Environmental science & technology
container_volume 43
creator Sirk, Kevin M
Saleh, Navid B
Phenrat, Tanapon
Kim, Hye-Jin
Dufour, Bruno
Ok, Jeongbin
Golas, Patricia L
Matyjaszewski, Krzysztof
Lowry, Gregory V
Tilton, Robert D
description Polyelectrolyte coatings significantly increase the mobility of nanoscale zerovalent iron (NZVI) in saturated porous media. The effect can be attributed to improved colloidal stability of NZVI suspensions, decreased adhesion to soil surfaces, or a combination of the two effects. This research explicitly examines how coatings control NZVI adhesion to model soil surfaces. NZVI was coated with three different polyelectrolyte block copolymers based on poly(methacrylic acid), poly(methyl methacrylate or butyl methacrylate), and poly(styrenesulfonate) or with a poly(styrenesulfonate) homopolymer. SiO2 and a humic acid film served as model soil surfaces. The polyelectrolytes increased the magnitude of the electrophoretic mobility of NZVI over a broad pH range relative to unmodified NZVI and shifted the isoelectric point outside the typical groundwater pH range. Quartz crystal microgravimetry measurements indicated extensive adhesion of unmodified NZVI to SiO2. Polyelectrolyte coatings decreased adhesion by approximately 3 orders of magnitude. Adding 50 mM NaCl to screen electrostatic repulsions did not significantly increase adhesion of modified NZVI. Coated NZVI did not adhere to humic acid films for either 1 mM NaHCO3 or 1 mM NaHCO3 + 50 mM NaCl. The lack of adhesion even in a high ionic strength medium was attributed to electrosteric repulsion, as opposed to electrostatic double layer repulsion, between the polyelectrolyte-coated NZVI and the negatively charged surfaces. The lack of significant adhesion on either model surface was observed for all polymer architectures investigated.
doi_str_mv 10.1021/es803589t
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_67402125</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>67402125</sourcerecordid><originalsourceid>FETCH-LOGICAL-a370t-f1b80dce9d9f3620f7a8a412b817162e04d068a5c2702e644f1a1d46e8c75eba3</originalsourceid><addsrcrecordid>eNplkEFrFTEQx4NY7LP14BeQICj0sDrJJrvZ46NULVQttIp4WWazE9ySt2mT7KHf3jz66IP2NMP8f8wMP8beCvgkQIrPlAzU2nT5BVsJLaHSRouXbAUg6qqrmz-H7HVKNwAgazCv2KHotFKmEyvmz5wjm3lwfD2mEAca-WXw9-TLNJYmU-Jh5j9wDsmiJ_6XYuC_Szdnfh5LdIkxT7Yk65zR_ttsgxz4VZg8v1qiQ0v8exjJp2N24NAnerOrR-zXl7Pr02_Vxc-v56friwrrFnLlxGBgtNSNnasbCa5Fg0rIwYhWNJJAjdAY1Fa2IKlRygkUo2rI2FbTgPUR-_iw9zaGu4VS7jdTsuQ9zhSW1DetKtqkLuD7J-BNWOJcfuuLKaFVK5sCnTxANoaUIrn-Nk4bjPe9gH7rv3_0X9h3u4XLsKFxT-6EF-DDDsCtThdxtlN65KTQAIXdc2jT_qnnB_8DLXmY5w</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>230154726</pqid></control><display><type>article</type><title>Effect of Adsorbed Polyelectrolytes on Nanoscale Zero Valent Iron Particle Attachment to Soil Surface Models</title><source>American Chemical Society:Jisc Collections:American Chemical Society Read &amp; Publish Agreement 2022-2024 (Reading list)</source><creator>Sirk, Kevin M ; Saleh, Navid B ; Phenrat, Tanapon ; Kim, Hye-Jin ; Dufour, Bruno ; Ok, Jeongbin ; Golas, Patricia L ; Matyjaszewski, Krzysztof ; Lowry, Gregory V ; Tilton, Robert D</creator><creatorcontrib>Sirk, Kevin M ; Saleh, Navid B ; Phenrat, Tanapon ; Kim, Hye-Jin ; Dufour, Bruno ; Ok, Jeongbin ; Golas, Patricia L ; Matyjaszewski, Krzysztof ; Lowry, Gregory V ; Tilton, Robert D</creatorcontrib><description>Polyelectrolyte coatings significantly increase the mobility of nanoscale zerovalent iron (NZVI) in saturated porous media. The effect can be attributed to improved colloidal stability of NZVI suspensions, decreased adhesion to soil surfaces, or a combination of the two effects. This research explicitly examines how coatings control NZVI adhesion to model soil surfaces. NZVI was coated with three different polyelectrolyte block copolymers based on poly(methacrylic acid), poly(methyl methacrylate or butyl methacrylate), and poly(styrenesulfonate) or with a poly(styrenesulfonate) homopolymer. SiO2 and a humic acid film served as model soil surfaces. The polyelectrolytes increased the magnitude of the electrophoretic mobility of NZVI over a broad pH range relative to unmodified NZVI and shifted the isoelectric point outside the typical groundwater pH range. Quartz crystal microgravimetry measurements indicated extensive adhesion of unmodified NZVI to SiO2. Polyelectrolyte coatings decreased adhesion by approximately 3 orders of magnitude. Adding 50 mM NaCl to screen electrostatic repulsions did not significantly increase adhesion of modified NZVI. Coated NZVI did not adhere to humic acid films for either 1 mM NaHCO3 or 1 mM NaHCO3 + 50 mM NaCl. The lack of adhesion even in a high ionic strength medium was attributed to electrosteric repulsion, as opposed to electrostatic double layer repulsion, between the polyelectrolyte-coated NZVI and the negatively charged surfaces. The lack of significant adhesion on either model surface was observed for all polymer architectures investigated.</description><identifier>ISSN: 0013-936X</identifier><identifier>EISSN: 1520-5851</identifier><identifier>DOI: 10.1021/es803589t</identifier><identifier>PMID: 19544891</identifier><identifier>CODEN: ESTHAG</identifier><language>eng</language><publisher>Washington, DC: American Chemical Society</publisher><subject>Adhesiveness ; Adsorption ; Applied sciences ; Copolymers ; Crystallization ; Effects ; Electrolytes ; Electrophoresis ; Electrostatics ; Exact sciences and technology ; Humic Substances ; Hydrogen-Ion Concentration ; Iron - chemistry ; Models, Chemical ; Nanoparticles - chemistry ; Pollution ; Polyamines - chemistry ; Polymers - chemistry ; Polymethacrylic Acids - chemistry ; Quartz ; Quartz - chemistry ; Remediation and Control Technologies ; Silicon Dioxide - chemistry ; Soil ; Soils ; Surface Properties ; Temperature ; Time Factors</subject><ispartof>Environmental science &amp; technology, 2009-05, Vol.43 (10), p.3803-3808</ispartof><rights>Copyright © 2009 American Chemical Society</rights><rights>2009 INIST-CNRS</rights><rights>Copyright American Chemical Society May 15, 2009</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a370t-f1b80dce9d9f3620f7a8a412b817162e04d068a5c2702e644f1a1d46e8c75eba3</citedby><cites>FETCH-LOGICAL-a370t-f1b80dce9d9f3620f7a8a412b817162e04d068a5c2702e644f1a1d46e8c75eba3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=21500954$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/19544891$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Sirk, Kevin M</creatorcontrib><creatorcontrib>Saleh, Navid B</creatorcontrib><creatorcontrib>Phenrat, Tanapon</creatorcontrib><creatorcontrib>Kim, Hye-Jin</creatorcontrib><creatorcontrib>Dufour, Bruno</creatorcontrib><creatorcontrib>Ok, Jeongbin</creatorcontrib><creatorcontrib>Golas, Patricia L</creatorcontrib><creatorcontrib>Matyjaszewski, Krzysztof</creatorcontrib><creatorcontrib>Lowry, Gregory V</creatorcontrib><creatorcontrib>Tilton, Robert D</creatorcontrib><title>Effect of Adsorbed Polyelectrolytes on Nanoscale Zero Valent Iron Particle Attachment to Soil Surface Models</title><title>Environmental science &amp; technology</title><addtitle>Environ. Sci. Technol</addtitle><description>Polyelectrolyte coatings significantly increase the mobility of nanoscale zerovalent iron (NZVI) in saturated porous media. The effect can be attributed to improved colloidal stability of NZVI suspensions, decreased adhesion to soil surfaces, or a combination of the two effects. This research explicitly examines how coatings control NZVI adhesion to model soil surfaces. NZVI was coated with three different polyelectrolyte block copolymers based on poly(methacrylic acid), poly(methyl methacrylate or butyl methacrylate), and poly(styrenesulfonate) or with a poly(styrenesulfonate) homopolymer. SiO2 and a humic acid film served as model soil surfaces. The polyelectrolytes increased the magnitude of the electrophoretic mobility of NZVI over a broad pH range relative to unmodified NZVI and shifted the isoelectric point outside the typical groundwater pH range. Quartz crystal microgravimetry measurements indicated extensive adhesion of unmodified NZVI to SiO2. Polyelectrolyte coatings decreased adhesion by approximately 3 orders of magnitude. Adding 50 mM NaCl to screen electrostatic repulsions did not significantly increase adhesion of modified NZVI. Coated NZVI did not adhere to humic acid films for either 1 mM NaHCO3 or 1 mM NaHCO3 + 50 mM NaCl. The lack of adhesion even in a high ionic strength medium was attributed to electrosteric repulsion, as opposed to electrostatic double layer repulsion, between the polyelectrolyte-coated NZVI and the negatively charged surfaces. The lack of significant adhesion on either model surface was observed for all polymer architectures investigated.</description><subject>Adhesiveness</subject><subject>Adsorption</subject><subject>Applied sciences</subject><subject>Copolymers</subject><subject>Crystallization</subject><subject>Effects</subject><subject>Electrolytes</subject><subject>Electrophoresis</subject><subject>Electrostatics</subject><subject>Exact sciences and technology</subject><subject>Humic Substances</subject><subject>Hydrogen-Ion Concentration</subject><subject>Iron - chemistry</subject><subject>Models, Chemical</subject><subject>Nanoparticles - chemistry</subject><subject>Pollution</subject><subject>Polyamines - chemistry</subject><subject>Polymers - chemistry</subject><subject>Polymethacrylic Acids - chemistry</subject><subject>Quartz</subject><subject>Quartz - chemistry</subject><subject>Remediation and Control Technologies</subject><subject>Silicon Dioxide - chemistry</subject><subject>Soil</subject><subject>Soils</subject><subject>Surface Properties</subject><subject>Temperature</subject><subject>Time Factors</subject><issn>0013-936X</issn><issn>1520-5851</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2009</creationdate><recordtype>article</recordtype><recordid>eNplkEFrFTEQx4NY7LP14BeQICj0sDrJJrvZ46NULVQttIp4WWazE9ySt2mT7KHf3jz66IP2NMP8f8wMP8beCvgkQIrPlAzU2nT5BVsJLaHSRouXbAUg6qqrmz-H7HVKNwAgazCv2KHotFKmEyvmz5wjm3lwfD2mEAca-WXw9-TLNJYmU-Jh5j9wDsmiJ_6XYuC_Szdnfh5LdIkxT7Yk65zR_ttsgxz4VZg8v1qiQ0v8exjJp2N24NAnerOrR-zXl7Pr02_Vxc-v56friwrrFnLlxGBgtNSNnasbCa5Fg0rIwYhWNJJAjdAY1Fa2IKlRygkUo2rI2FbTgPUR-_iw9zaGu4VS7jdTsuQ9zhSW1DetKtqkLuD7J-BNWOJcfuuLKaFVK5sCnTxANoaUIrn-Nk4bjPe9gH7rv3_0X9h3u4XLsKFxT-6EF-DDDsCtThdxtlN65KTQAIXdc2jT_qnnB_8DLXmY5w</recordid><startdate>20090515</startdate><enddate>20090515</enddate><creator>Sirk, Kevin M</creator><creator>Saleh, Navid B</creator><creator>Phenrat, Tanapon</creator><creator>Kim, Hye-Jin</creator><creator>Dufour, Bruno</creator><creator>Ok, Jeongbin</creator><creator>Golas, Patricia L</creator><creator>Matyjaszewski, Krzysztof</creator><creator>Lowry, Gregory V</creator><creator>Tilton, Robert D</creator><general>American Chemical Society</general><scope>IQODW</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QO</scope><scope>7ST</scope><scope>7T7</scope><scope>7U7</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>P64</scope><scope>SOI</scope><scope>7X8</scope></search><sort><creationdate>20090515</creationdate><title>Effect of Adsorbed Polyelectrolytes on Nanoscale Zero Valent Iron Particle Attachment to Soil Surface Models</title><author>Sirk, Kevin M ; Saleh, Navid B ; Phenrat, Tanapon ; Kim, Hye-Jin ; Dufour, Bruno ; Ok, Jeongbin ; Golas, Patricia L ; Matyjaszewski, Krzysztof ; Lowry, Gregory V ; Tilton, Robert D</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a370t-f1b80dce9d9f3620f7a8a412b817162e04d068a5c2702e644f1a1d46e8c75eba3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2009</creationdate><topic>Adhesiveness</topic><topic>Adsorption</topic><topic>Applied sciences</topic><topic>Copolymers</topic><topic>Crystallization</topic><topic>Effects</topic><topic>Electrolytes</topic><topic>Electrophoresis</topic><topic>Electrostatics</topic><topic>Exact sciences and technology</topic><topic>Humic Substances</topic><topic>Hydrogen-Ion Concentration</topic><topic>Iron - chemistry</topic><topic>Models, Chemical</topic><topic>Nanoparticles - chemistry</topic><topic>Pollution</topic><topic>Polyamines - chemistry</topic><topic>Polymers - chemistry</topic><topic>Polymethacrylic Acids - chemistry</topic><topic>Quartz</topic><topic>Quartz - chemistry</topic><topic>Remediation and Control Technologies</topic><topic>Silicon Dioxide - chemistry</topic><topic>Soil</topic><topic>Soils</topic><topic>Surface Properties</topic><topic>Temperature</topic><topic>Time Factors</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Sirk, Kevin M</creatorcontrib><creatorcontrib>Saleh, Navid B</creatorcontrib><creatorcontrib>Phenrat, Tanapon</creatorcontrib><creatorcontrib>Kim, Hye-Jin</creatorcontrib><creatorcontrib>Dufour, Bruno</creatorcontrib><creatorcontrib>Ok, Jeongbin</creatorcontrib><creatorcontrib>Golas, Patricia L</creatorcontrib><creatorcontrib>Matyjaszewski, Krzysztof</creatorcontrib><creatorcontrib>Lowry, Gregory V</creatorcontrib><creatorcontrib>Tilton, Robert D</creatorcontrib><collection>Pascal-Francis</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Biotechnology Research Abstracts</collection><collection>Environment Abstracts</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Toxicology Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Environment Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>Environmental science &amp; technology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Sirk, Kevin M</au><au>Saleh, Navid B</au><au>Phenrat, Tanapon</au><au>Kim, Hye-Jin</au><au>Dufour, Bruno</au><au>Ok, Jeongbin</au><au>Golas, Patricia L</au><au>Matyjaszewski, Krzysztof</au><au>Lowry, Gregory V</au><au>Tilton, Robert D</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Effect of Adsorbed Polyelectrolytes on Nanoscale Zero Valent Iron Particle Attachment to Soil Surface Models</atitle><jtitle>Environmental science &amp; technology</jtitle><addtitle>Environ. Sci. Technol</addtitle><date>2009-05-15</date><risdate>2009</risdate><volume>43</volume><issue>10</issue><spage>3803</spage><epage>3808</epage><pages>3803-3808</pages><issn>0013-936X</issn><eissn>1520-5851</eissn><coden>ESTHAG</coden><abstract>Polyelectrolyte coatings significantly increase the mobility of nanoscale zerovalent iron (NZVI) in saturated porous media. The effect can be attributed to improved colloidal stability of NZVI suspensions, decreased adhesion to soil surfaces, or a combination of the two effects. This research explicitly examines how coatings control NZVI adhesion to model soil surfaces. NZVI was coated with three different polyelectrolyte block copolymers based on poly(methacrylic acid), poly(methyl methacrylate or butyl methacrylate), and poly(styrenesulfonate) or with a poly(styrenesulfonate) homopolymer. SiO2 and a humic acid film served as model soil surfaces. The polyelectrolytes increased the magnitude of the electrophoretic mobility of NZVI over a broad pH range relative to unmodified NZVI and shifted the isoelectric point outside the typical groundwater pH range. Quartz crystal microgravimetry measurements indicated extensive adhesion of unmodified NZVI to SiO2. Polyelectrolyte coatings decreased adhesion by approximately 3 orders of magnitude. Adding 50 mM NaCl to screen electrostatic repulsions did not significantly increase adhesion of modified NZVI. Coated NZVI did not adhere to humic acid films for either 1 mM NaHCO3 or 1 mM NaHCO3 + 50 mM NaCl. The lack of adhesion even in a high ionic strength medium was attributed to electrosteric repulsion, as opposed to electrostatic double layer repulsion, between the polyelectrolyte-coated NZVI and the negatively charged surfaces. The lack of significant adhesion on either model surface was observed for all polymer architectures investigated.</abstract><cop>Washington, DC</cop><pub>American Chemical Society</pub><pmid>19544891</pmid><doi>10.1021/es803589t</doi><tpages>6</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0013-936X
ispartof Environmental science & technology, 2009-05, Vol.43 (10), p.3803-3808
issn 0013-936X
1520-5851
language eng
recordid cdi_proquest_miscellaneous_67402125
source American Chemical Society:Jisc Collections:American Chemical Society Read & Publish Agreement 2022-2024 (Reading list)
subjects Adhesiveness
Adsorption
Applied sciences
Copolymers
Crystallization
Effects
Electrolytes
Electrophoresis
Electrostatics
Exact sciences and technology
Humic Substances
Hydrogen-Ion Concentration
Iron - chemistry
Models, Chemical
Nanoparticles - chemistry
Pollution
Polyamines - chemistry
Polymers - chemistry
Polymethacrylic Acids - chemistry
Quartz
Quartz - chemistry
Remediation and Control Technologies
Silicon Dioxide - chemistry
Soil
Soils
Surface Properties
Temperature
Time Factors
title Effect of Adsorbed Polyelectrolytes on Nanoscale Zero Valent Iron Particle Attachment to Soil Surface Models
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-06T19%3A28%3A19IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Effect%20of%20Adsorbed%20Polyelectrolytes%20on%20Nanoscale%20Zero%20Valent%20Iron%20Particle%20Attachment%20to%20Soil%20Surface%20Models&rft.jtitle=Environmental%20science%20&%20technology&rft.au=Sirk,%20Kevin%20M&rft.date=2009-05-15&rft.volume=43&rft.issue=10&rft.spage=3803&rft.epage=3808&rft.pages=3803-3808&rft.issn=0013-936X&rft.eissn=1520-5851&rft.coden=ESTHAG&rft_id=info:doi/10.1021/es803589t&rft_dat=%3Cproquest_cross%3E67402125%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-a370t-f1b80dce9d9f3620f7a8a412b817162e04d068a5c2702e644f1a1d46e8c75eba3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=230154726&rft_id=info:pmid/19544891&rfr_iscdi=true