Loading…

The role of N-acetylglucosaminyltransferase III and V in the post-transcriptional modifications of E-cadherin

It has long been recognized that E-cadherin dysfunction is a major cause of epithelial cell invasion. However, very little is known about the post-transcriptional modifications of E-cadherin and its role in E-cadherin mediated tumor progression. N-acetylglucosaminyltransferase III (GnT-III) catalyze...

Full description

Saved in:
Bibliographic Details
Published in:Human molecular genetics 2009-07, Vol.18 (14), p.2599-2608
Main Authors: Pinho, Salomé S., Reis, Celso A., Paredes, Joana, Magalhães, Ana Maria, Ferreira, António Carlos, Figueiredo, Joana, Xiaogang, Wen, Carneiro, Fátima, Gärtner, Fátima, Seruca, Raquel
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:It has long been recognized that E-cadherin dysfunction is a major cause of epithelial cell invasion. However, very little is known about the post-transcriptional modifications of E-cadherin and its role in E-cadherin mediated tumor progression. N-acetylglucosaminyltransferase III (GnT-III) catalyzes the formation of a bisecting GlcNAc structure in N-glycans, and has been pointed as a metastasis suppressor. N-acetylglucosaminyltransferase V (GnT-V) catalyzes the addition of β1,6 GlcNAc branching of N-glycans, and has been associated to increase metastasis. The regulatory mechanism between E-cadherin expression and the remodeling of its oligosaccharides structures by GnT-III and GnT-V were explored in this study. We have demonstrated that wild-type E-cadherin regulates MGAT3 gene transcription resulting in increased GnT-III expression. We also showed that GnT-III and GnT-V competitively modified E-cadherin N-glycans. The GnT-III knockdown cells revealed a membrane de-localization of E-cadherin leading to its cytoplasmic accumulation. Further, the GnT-III knockdown cells also caused modifications of E-cadherin N-glycans catalyzed by GnT-III and GnT-V. Altogether our results have clarified the existence of a bidirectional crosstalk between E-cadherin and GnT-III/GnT-V that was, for the first time, reproduced in an in vivo model. This study opens new insights into the post-transcriptional modifications of E-cadherin in its biological function, in a tumor context.
ISSN:0964-6906
1460-2083
DOI:10.1093/hmg/ddp194