Loading…
Fermi gap stabilization of an incommensurate two-dimensional superstructure
The compressed, incommensurate approximately (9.5 x 9.5) moire superstructure of the Ag monolayer on Cu(111) displays a filled surface state band with a Fermi energy gap at the Brillouin zone boundary. By contrast, the surface band is gapless for the less compressed, commensurate (9 x 9) moire of tw...
Saved in:
Published in: | Physical review letters 2005-01, Vol.94 (1), p.016103-016103, Article 016103 |
---|---|
Main Authors: | , , , , |
Format: | Article |
Language: | English |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | The compressed, incommensurate approximately (9.5 x 9.5) moire superstructure of the Ag monolayer on Cu(111) displays a filled surface state band with a Fermi energy gap at the Brillouin zone boundary. By contrast, the surface band is gapless for the less compressed, commensurate (9 x 9) moire of two Ag layers. A simple estimate of the energy gain rendered by opening this gap gives a value similar to the elastic energy change required to modify the commensurate structure, thereby suggesting that the approximately (9.5 x 9.5) incommensurate phase is stabilized by such a gap opening. The possible presence of a charge density wave state is discussed. |
---|---|
ISSN: | 0031-9007 1079-7114 |
DOI: | 10.1103/PhysRevLett.94.016103 |