Loading…

Involvement of Chemokine Receptor 4/Stromal Cell–Derived Factor 1 System during Osteosarcoma Tumor Progression

Despite intensive chemotherapy and surgery treatment, lung and bone metastasis develop in about 30% of patients with osteosarcoma. Mechanisms for this preferential metastatic behavior are largely unknown. We investigated the role of the chemokine receptor 4 (CXCR4)/stromal cell–derived factor 1 (SDF...

Full description

Saved in:
Bibliographic Details
Published in:Clinical cancer research 2005-01, Vol.11 (2), p.490-497
Main Authors: PERISSINOTTO, Eliana, CAVALLONI, Giuliana, AGLIETTA, Massimo, LEONE, Francesco, FONSATO, Valentina, MITOLA, Stefania, GRIGNANI, Giovanni, SURRENTI, Nadia, SANGIOLO, Dario, BUSSOLINO, Federico, PIACIBELLO, Wanda
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Despite intensive chemotherapy and surgery treatment, lung and bone metastasis develop in about 30% of patients with osteosarcoma. Mechanisms for this preferential metastatic behavior are largely unknown. We investigated the role of the chemokine receptor 4 (CXCR4)/stromal cell–derived factor 1 (SDF-1) system to drive the homing of osteosarcoma cells. We analyzed the expression of the CXCR4 and SDF-1 proteins on several osteosarcoma cell lines and the effects of SDF-1 on migration, adhesion, and proliferation of these cancer cells. In vitro assays showed that the migration of osteosarcoma cells expressing CXCR4 receptor follows an SDF-1 gradient and that their adhesion to endothelial and bone marrow stromal cells is promoted by SDF-1 treatment. Moreover, the production of matrix metalloproteinase-9 is increased after SDF-1 exposure. We finally proved in a mouse model our hypothesis of the CXCR4/SDF-1 axis involvement in the metastatic process of osteosarcoma cells. Development of lung metastasis after injection of osteosarcoma cells was prevented by the administration of a CXCR4 inhibitor, the T134 peptide. These data show a possible explanation for the preferential osteosarcoma metastatic development into the lung, where SDF-1 concentration is high, and suggest that molecular strategies aimed at inhibiting the CXCR4/SDF-1 pathway, such as small-molecule inhibitors or anti-CXCR4 antibodies, might prevent the dissemination of osteosarcoma cells.
ISSN:1078-0432
1557-3265
DOI:10.1158/1078-0432.490.11.2