Loading…

Antioxidant Sensors Based on Iron Diethylenetriaminepentaacetic Acid, Hematin, and Hemoglobin Modified TiO2 Nanoparticle Printed Electrodes

Antioxidant amperometric sensors based on iron-containing complexes and protein modified electrodes were developed. Indium tin oxide glass was printed with TiO2 nanoparticles, onto which iron-containing compounds and protein were adsorbed. When applied with negative potentials, the dissolved oxygen...

Full description

Saved in:
Bibliographic Details
Published in:Analytical chemistry (Washington) 2009-07, Vol.81 (13), p.5381-5389
Main Authors: Guo, Qingqing, Ji, Shujun, Yue, Qiaoli, Wang, Lei, Liu, Jifeng, Jia, Jianbo
Format: Article
Language:English
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites
container_end_page 5389
container_issue 13
container_start_page 5381
container_title Analytical chemistry (Washington)
container_volume 81
creator Guo, Qingqing
Ji, Shujun
Yue, Qiaoli
Wang, Lei
Liu, Jifeng
Jia, Jianbo
description Antioxidant amperometric sensors based on iron-containing complexes and protein modified electrodes were developed. Indium tin oxide glass was printed with TiO2 nanoparticles, onto which iron-containing compounds and protein were adsorbed. When applied with negative potentials, the dissolved oxygen is reduced to H2O2 at the electrode surface, and the H2O2 generated in situ oxidizes FeII to FeIII, and then electrochemical reduction of FeIII therefore gives rise to a catalytic current. In the presence of antioxidants, H2O2 was scavenged, the catalytic current was reduced, and the decreased current signal was proportional to the quantity of existing antioxidants. A kinetic model was proposed to quantify the H2O2 scavenging capacities of the antioxidants. With the use of the sensor developed here, antioxidant measurements can be done quite simply: put the sensor into the sample solutions (in aerobic atmosphere), perform a cathodic polarization scan, and then read the antioxidant activity values. The present work can be complementary to the previous studies of antioxidant sensor techniques based on OH radicals and superoxide ions scavenging methods, but the sensor developed here is much easier to fabricate and use.
doi_str_mv 10.1021/ac9005205
format article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_proquest_miscellaneous_67427994</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>67427994</sourcerecordid><originalsourceid>FETCH-LOGICAL-a269t-f5bc5ab56bd497e87633c1b5d8cf72289cfd15ee20e84b9056666704003ce66d3</originalsourceid><addsrcrecordid>eNpFkcFOHDEMhiNEBVvogReocqEnpnUyM5nJcUtpQaJQqfQ88iQeGjSTLElWKs_Ql25Qt9QH_7L82ZL9M3Yi4L0AKT6g0QCthHaPrUTRSvW93GcrAKgr2QEcstcpPQAIAUIdsEOhG621gBX7vfbZhV_Oos_8O_kUYuIfMZHlwfOrWNInR_nn00yecnS4OE8b8hnRUHaGr42zZ_ySFszOn3H09rkI93MYnedfg3WTK8vu3K3kN-jDBmMZm4l_i87n0rmYyeQYLKVj9mrCOdGbnR6xH58v7s4vq-vbL1fn6-sKpdK5mtrRtDi2arSN7qjvVF0bMba2N1MnZa_NZEVLJIH6ZtTQqhIdNOUZhpSy9RF793fvJobHLaU8LC4Zmmf0FLZpUF0jO62bAr7dgdtxITtsolswPg3_3leA0x2AyeA8RfTGpRdOSui7BsR_Dk0aHsI2-nLfIGB4tm94sa_-A5mEipk</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>67427994</pqid></control><display><type>article</type><title>Antioxidant Sensors Based on Iron Diethylenetriaminepentaacetic Acid, Hematin, and Hemoglobin Modified TiO2 Nanoparticle Printed Electrodes</title><source>American Chemical Society:Jisc Collections:American Chemical Society Read &amp; Publish Agreement 2022-2024 (Reading list)</source><creator>Guo, Qingqing ; Ji, Shujun ; Yue, Qiaoli ; Wang, Lei ; Liu, Jifeng ; Jia, Jianbo</creator><creatorcontrib>Guo, Qingqing ; Ji, Shujun ; Yue, Qiaoli ; Wang, Lei ; Liu, Jifeng ; Jia, Jianbo</creatorcontrib><description>Antioxidant amperometric sensors based on iron-containing complexes and protein modified electrodes were developed. Indium tin oxide glass was printed with TiO2 nanoparticles, onto which iron-containing compounds and protein were adsorbed. When applied with negative potentials, the dissolved oxygen is reduced to H2O2 at the electrode surface, and the H2O2 generated in situ oxidizes FeII to FeIII, and then electrochemical reduction of FeIII therefore gives rise to a catalytic current. In the presence of antioxidants, H2O2 was scavenged, the catalytic current was reduced, and the decreased current signal was proportional to the quantity of existing antioxidants. A kinetic model was proposed to quantify the H2O2 scavenging capacities of the antioxidants. With the use of the sensor developed here, antioxidant measurements can be done quite simply: put the sensor into the sample solutions (in aerobic atmosphere), perform a cathodic polarization scan, and then read the antioxidant activity values. The present work can be complementary to the previous studies of antioxidant sensor techniques based on OH radicals and superoxide ions scavenging methods, but the sensor developed here is much easier to fabricate and use.</description><identifier>ISSN: 0003-2700</identifier><identifier>EISSN: 1520-6882</identifier><identifier>DOI: 10.1021/ac9005205</identifier><identifier>PMID: 19499910</identifier><identifier>CODEN: ANCHAM</identifier><language>eng</language><publisher>Washington, DC: American Chemical Society</publisher><subject>Analytical chemistry ; Antioxidants - analysis ; Antioxidants - chemistry ; Biosensing Techniques - instrumentation ; Biosensing Techniques - methods ; Chemistry ; Electrochemical methods ; Electrodes ; Exact sciences and technology ; General, instrumentation ; Hemin - chemistry ; Hemoglobins - chemistry ; Hydrogen Peroxide - metabolism ; Iron - chemistry ; Iron - metabolism ; Kinetics ; Metal Nanoparticles - chemistry ; Metal Nanoparticles - ultrastructure ; Oxidation-Reduction ; Pentetic Acid - analogs &amp; derivatives ; Pentetic Acid - chemistry ; Potentiometry ; Tin Compounds - chemistry ; Titanium - chemistry</subject><ispartof>Analytical chemistry (Washington), 2009-07, Vol.81 (13), p.5381-5389</ispartof><rights>Copyright © 2009 American Chemical Society</rights><rights>2015 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27915,27916</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=22087401$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/19499910$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Guo, Qingqing</creatorcontrib><creatorcontrib>Ji, Shujun</creatorcontrib><creatorcontrib>Yue, Qiaoli</creatorcontrib><creatorcontrib>Wang, Lei</creatorcontrib><creatorcontrib>Liu, Jifeng</creatorcontrib><creatorcontrib>Jia, Jianbo</creatorcontrib><title>Antioxidant Sensors Based on Iron Diethylenetriaminepentaacetic Acid, Hematin, and Hemoglobin Modified TiO2 Nanoparticle Printed Electrodes</title><title>Analytical chemistry (Washington)</title><addtitle>Anal. Chem</addtitle><description>Antioxidant amperometric sensors based on iron-containing complexes and protein modified electrodes were developed. Indium tin oxide glass was printed with TiO2 nanoparticles, onto which iron-containing compounds and protein were adsorbed. When applied with negative potentials, the dissolved oxygen is reduced to H2O2 at the electrode surface, and the H2O2 generated in situ oxidizes FeII to FeIII, and then electrochemical reduction of FeIII therefore gives rise to a catalytic current. In the presence of antioxidants, H2O2 was scavenged, the catalytic current was reduced, and the decreased current signal was proportional to the quantity of existing antioxidants. A kinetic model was proposed to quantify the H2O2 scavenging capacities of the antioxidants. With the use of the sensor developed here, antioxidant measurements can be done quite simply: put the sensor into the sample solutions (in aerobic atmosphere), perform a cathodic polarization scan, and then read the antioxidant activity values. The present work can be complementary to the previous studies of antioxidant sensor techniques based on OH radicals and superoxide ions scavenging methods, but the sensor developed here is much easier to fabricate and use.</description><subject>Analytical chemistry</subject><subject>Antioxidants - analysis</subject><subject>Antioxidants - chemistry</subject><subject>Biosensing Techniques - instrumentation</subject><subject>Biosensing Techniques - methods</subject><subject>Chemistry</subject><subject>Electrochemical methods</subject><subject>Electrodes</subject><subject>Exact sciences and technology</subject><subject>General, instrumentation</subject><subject>Hemin - chemistry</subject><subject>Hemoglobins - chemistry</subject><subject>Hydrogen Peroxide - metabolism</subject><subject>Iron - chemistry</subject><subject>Iron - metabolism</subject><subject>Kinetics</subject><subject>Metal Nanoparticles - chemistry</subject><subject>Metal Nanoparticles - ultrastructure</subject><subject>Oxidation-Reduction</subject><subject>Pentetic Acid - analogs &amp; derivatives</subject><subject>Pentetic Acid - chemistry</subject><subject>Potentiometry</subject><subject>Tin Compounds - chemistry</subject><subject>Titanium - chemistry</subject><issn>0003-2700</issn><issn>1520-6882</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2009</creationdate><recordtype>article</recordtype><recordid>eNpFkcFOHDEMhiNEBVvogReocqEnpnUyM5nJcUtpQaJQqfQ88iQeGjSTLElWKs_Ql25Qt9QH_7L82ZL9M3Yi4L0AKT6g0QCthHaPrUTRSvW93GcrAKgr2QEcstcpPQAIAUIdsEOhG621gBX7vfbZhV_Oos_8O_kUYuIfMZHlwfOrWNInR_nn00yecnS4OE8b8hnRUHaGr42zZ_ySFszOn3H09rkI93MYnedfg3WTK8vu3K3kN-jDBmMZm4l_i87n0rmYyeQYLKVj9mrCOdGbnR6xH58v7s4vq-vbL1fn6-sKpdK5mtrRtDi2arSN7qjvVF0bMba2N1MnZa_NZEVLJIH6ZtTQqhIdNOUZhpSy9RF793fvJobHLaU8LC4Zmmf0FLZpUF0jO62bAr7dgdtxITtsolswPg3_3leA0x2AyeA8RfTGpRdOSui7BsR_Dk0aHsI2-nLfIGB4tm94sa_-A5mEipk</recordid><startdate>20090701</startdate><enddate>20090701</enddate><creator>Guo, Qingqing</creator><creator>Ji, Shujun</creator><creator>Yue, Qiaoli</creator><creator>Wang, Lei</creator><creator>Liu, Jifeng</creator><creator>Jia, Jianbo</creator><general>American Chemical Society</general><scope>IQODW</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>7X8</scope></search><sort><creationdate>20090701</creationdate><title>Antioxidant Sensors Based on Iron Diethylenetriaminepentaacetic Acid, Hematin, and Hemoglobin Modified TiO2 Nanoparticle Printed Electrodes</title><author>Guo, Qingqing ; Ji, Shujun ; Yue, Qiaoli ; Wang, Lei ; Liu, Jifeng ; Jia, Jianbo</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a269t-f5bc5ab56bd497e87633c1b5d8cf72289cfd15ee20e84b9056666704003ce66d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2009</creationdate><topic>Analytical chemistry</topic><topic>Antioxidants - analysis</topic><topic>Antioxidants - chemistry</topic><topic>Biosensing Techniques - instrumentation</topic><topic>Biosensing Techniques - methods</topic><topic>Chemistry</topic><topic>Electrochemical methods</topic><topic>Electrodes</topic><topic>Exact sciences and technology</topic><topic>General, instrumentation</topic><topic>Hemin - chemistry</topic><topic>Hemoglobins - chemistry</topic><topic>Hydrogen Peroxide - metabolism</topic><topic>Iron - chemistry</topic><topic>Iron - metabolism</topic><topic>Kinetics</topic><topic>Metal Nanoparticles - chemistry</topic><topic>Metal Nanoparticles - ultrastructure</topic><topic>Oxidation-Reduction</topic><topic>Pentetic Acid - analogs &amp; derivatives</topic><topic>Pentetic Acid - chemistry</topic><topic>Potentiometry</topic><topic>Tin Compounds - chemistry</topic><topic>Titanium - chemistry</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Guo, Qingqing</creatorcontrib><creatorcontrib>Ji, Shujun</creatorcontrib><creatorcontrib>Yue, Qiaoli</creatorcontrib><creatorcontrib>Wang, Lei</creatorcontrib><creatorcontrib>Liu, Jifeng</creatorcontrib><creatorcontrib>Jia, Jianbo</creatorcontrib><collection>Pascal-Francis</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>MEDLINE - Academic</collection><jtitle>Analytical chemistry (Washington)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Guo, Qingqing</au><au>Ji, Shujun</au><au>Yue, Qiaoli</au><au>Wang, Lei</au><au>Liu, Jifeng</au><au>Jia, Jianbo</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Antioxidant Sensors Based on Iron Diethylenetriaminepentaacetic Acid, Hematin, and Hemoglobin Modified TiO2 Nanoparticle Printed Electrodes</atitle><jtitle>Analytical chemistry (Washington)</jtitle><addtitle>Anal. Chem</addtitle><date>2009-07-01</date><risdate>2009</risdate><volume>81</volume><issue>13</issue><spage>5381</spage><epage>5389</epage><pages>5381-5389</pages><issn>0003-2700</issn><eissn>1520-6882</eissn><coden>ANCHAM</coden><abstract>Antioxidant amperometric sensors based on iron-containing complexes and protein modified electrodes were developed. Indium tin oxide glass was printed with TiO2 nanoparticles, onto which iron-containing compounds and protein were adsorbed. When applied with negative potentials, the dissolved oxygen is reduced to H2O2 at the electrode surface, and the H2O2 generated in situ oxidizes FeII to FeIII, and then electrochemical reduction of FeIII therefore gives rise to a catalytic current. In the presence of antioxidants, H2O2 was scavenged, the catalytic current was reduced, and the decreased current signal was proportional to the quantity of existing antioxidants. A kinetic model was proposed to quantify the H2O2 scavenging capacities of the antioxidants. With the use of the sensor developed here, antioxidant measurements can be done quite simply: put the sensor into the sample solutions (in aerobic atmosphere), perform a cathodic polarization scan, and then read the antioxidant activity values. The present work can be complementary to the previous studies of antioxidant sensor techniques based on OH radicals and superoxide ions scavenging methods, but the sensor developed here is much easier to fabricate and use.</abstract><cop>Washington, DC</cop><pub>American Chemical Society</pub><pmid>19499910</pmid><doi>10.1021/ac9005205</doi><tpages>9</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0003-2700
ispartof Analytical chemistry (Washington), 2009-07, Vol.81 (13), p.5381-5389
issn 0003-2700
1520-6882
language eng
recordid cdi_proquest_miscellaneous_67427994
source American Chemical Society:Jisc Collections:American Chemical Society Read & Publish Agreement 2022-2024 (Reading list)
subjects Analytical chemistry
Antioxidants - analysis
Antioxidants - chemistry
Biosensing Techniques - instrumentation
Biosensing Techniques - methods
Chemistry
Electrochemical methods
Electrodes
Exact sciences and technology
General, instrumentation
Hemin - chemistry
Hemoglobins - chemistry
Hydrogen Peroxide - metabolism
Iron - chemistry
Iron - metabolism
Kinetics
Metal Nanoparticles - chemistry
Metal Nanoparticles - ultrastructure
Oxidation-Reduction
Pentetic Acid - analogs & derivatives
Pentetic Acid - chemistry
Potentiometry
Tin Compounds - chemistry
Titanium - chemistry
title Antioxidant Sensors Based on Iron Diethylenetriaminepentaacetic Acid, Hematin, and Hemoglobin Modified TiO2 Nanoparticle Printed Electrodes
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-15T05%3A04%3A33IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Antioxidant%20Sensors%20Based%20on%20Iron%20Diethylenetriaminepentaacetic%20Acid,%20Hematin,%20and%20Hemoglobin%20Modified%20TiO2%20Nanoparticle%20Printed%20Electrodes&rft.jtitle=Analytical%20chemistry%20(Washington)&rft.au=Guo,%20Qingqing&rft.date=2009-07-01&rft.volume=81&rft.issue=13&rft.spage=5381&rft.epage=5389&rft.pages=5381-5389&rft.issn=0003-2700&rft.eissn=1520-6882&rft.coden=ANCHAM&rft_id=info:doi/10.1021/ac9005205&rft_dat=%3Cproquest_pubme%3E67427994%3C/proquest_pubme%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-a269t-f5bc5ab56bd497e87633c1b5d8cf72289cfd15ee20e84b9056666704003ce66d3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=67427994&rft_id=info:pmid/19499910&rfr_iscdi=true