Loading…
Antioxidant Sensors Based on Iron Diethylenetriaminepentaacetic Acid, Hematin, and Hemoglobin Modified TiO2 Nanoparticle Printed Electrodes
Antioxidant amperometric sensors based on iron-containing complexes and protein modified electrodes were developed. Indium tin oxide glass was printed with TiO2 nanoparticles, onto which iron-containing compounds and protein were adsorbed. When applied with negative potentials, the dissolved oxygen...
Saved in:
Published in: | Analytical chemistry (Washington) 2009-07, Vol.81 (13), p.5381-5389 |
---|---|
Main Authors: | , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | |
container_end_page | 5389 |
container_issue | 13 |
container_start_page | 5381 |
container_title | Analytical chemistry (Washington) |
container_volume | 81 |
creator | Guo, Qingqing Ji, Shujun Yue, Qiaoli Wang, Lei Liu, Jifeng Jia, Jianbo |
description | Antioxidant amperometric sensors based on iron-containing complexes and protein modified electrodes were developed. Indium tin oxide glass was printed with TiO2 nanoparticles, onto which iron-containing compounds and protein were adsorbed. When applied with negative potentials, the dissolved oxygen is reduced to H2O2 at the electrode surface, and the H2O2 generated in situ oxidizes FeII to FeIII, and then electrochemical reduction of FeIII therefore gives rise to a catalytic current. In the presence of antioxidants, H2O2 was scavenged, the catalytic current was reduced, and the decreased current signal was proportional to the quantity of existing antioxidants. A kinetic model was proposed to quantify the H2O2 scavenging capacities of the antioxidants. With the use of the sensor developed here, antioxidant measurements can be done quite simply: put the sensor into the sample solutions (in aerobic atmosphere), perform a cathodic polarization scan, and then read the antioxidant activity values. The present work can be complementary to the previous studies of antioxidant sensor techniques based on OH radicals and superoxide ions scavenging methods, but the sensor developed here is much easier to fabricate and use. |
doi_str_mv | 10.1021/ac9005205 |
format | article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_proquest_miscellaneous_67427994</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>67427994</sourcerecordid><originalsourceid>FETCH-LOGICAL-a269t-f5bc5ab56bd497e87633c1b5d8cf72289cfd15ee20e84b9056666704003ce66d3</originalsourceid><addsrcrecordid>eNpFkcFOHDEMhiNEBVvogReocqEnpnUyM5nJcUtpQaJQqfQ88iQeGjSTLElWKs_Ql25Qt9QH_7L82ZL9M3Yi4L0AKT6g0QCthHaPrUTRSvW93GcrAKgr2QEcstcpPQAIAUIdsEOhG621gBX7vfbZhV_Oos_8O_kUYuIfMZHlwfOrWNInR_nn00yecnS4OE8b8hnRUHaGr42zZ_ySFszOn3H09rkI93MYnedfg3WTK8vu3K3kN-jDBmMZm4l_i87n0rmYyeQYLKVj9mrCOdGbnR6xH58v7s4vq-vbL1fn6-sKpdK5mtrRtDi2arSN7qjvVF0bMba2N1MnZa_NZEVLJIH6ZtTQqhIdNOUZhpSy9RF793fvJobHLaU8LC4Zmmf0FLZpUF0jO62bAr7dgdtxITtsolswPg3_3leA0x2AyeA8RfTGpRdOSui7BsR_Dk0aHsI2-nLfIGB4tm94sa_-A5mEipk</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>67427994</pqid></control><display><type>article</type><title>Antioxidant Sensors Based on Iron Diethylenetriaminepentaacetic Acid, Hematin, and Hemoglobin Modified TiO2 Nanoparticle Printed Electrodes</title><source>American Chemical Society:Jisc Collections:American Chemical Society Read & Publish Agreement 2022-2024 (Reading list)</source><creator>Guo, Qingqing ; Ji, Shujun ; Yue, Qiaoli ; Wang, Lei ; Liu, Jifeng ; Jia, Jianbo</creator><creatorcontrib>Guo, Qingqing ; Ji, Shujun ; Yue, Qiaoli ; Wang, Lei ; Liu, Jifeng ; Jia, Jianbo</creatorcontrib><description>Antioxidant amperometric sensors based on iron-containing complexes and protein modified electrodes were developed. Indium tin oxide glass was printed with TiO2 nanoparticles, onto which iron-containing compounds and protein were adsorbed. When applied with negative potentials, the dissolved oxygen is reduced to H2O2 at the electrode surface, and the H2O2 generated in situ oxidizes FeII to FeIII, and then electrochemical reduction of FeIII therefore gives rise to a catalytic current. In the presence of antioxidants, H2O2 was scavenged, the catalytic current was reduced, and the decreased current signal was proportional to the quantity of existing antioxidants. A kinetic model was proposed to quantify the H2O2 scavenging capacities of the antioxidants. With the use of the sensor developed here, antioxidant measurements can be done quite simply: put the sensor into the sample solutions (in aerobic atmosphere), perform a cathodic polarization scan, and then read the antioxidant activity values. The present work can be complementary to the previous studies of antioxidant sensor techniques based on OH radicals and superoxide ions scavenging methods, but the sensor developed here is much easier to fabricate and use.</description><identifier>ISSN: 0003-2700</identifier><identifier>EISSN: 1520-6882</identifier><identifier>DOI: 10.1021/ac9005205</identifier><identifier>PMID: 19499910</identifier><identifier>CODEN: ANCHAM</identifier><language>eng</language><publisher>Washington, DC: American Chemical Society</publisher><subject>Analytical chemistry ; Antioxidants - analysis ; Antioxidants - chemistry ; Biosensing Techniques - instrumentation ; Biosensing Techniques - methods ; Chemistry ; Electrochemical methods ; Electrodes ; Exact sciences and technology ; General, instrumentation ; Hemin - chemistry ; Hemoglobins - chemistry ; Hydrogen Peroxide - metabolism ; Iron - chemistry ; Iron - metabolism ; Kinetics ; Metal Nanoparticles - chemistry ; Metal Nanoparticles - ultrastructure ; Oxidation-Reduction ; Pentetic Acid - analogs & derivatives ; Pentetic Acid - chemistry ; Potentiometry ; Tin Compounds - chemistry ; Titanium - chemistry</subject><ispartof>Analytical chemistry (Washington), 2009-07, Vol.81 (13), p.5381-5389</ispartof><rights>Copyright © 2009 American Chemical Society</rights><rights>2015 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27915,27916</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=22087401$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/19499910$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Guo, Qingqing</creatorcontrib><creatorcontrib>Ji, Shujun</creatorcontrib><creatorcontrib>Yue, Qiaoli</creatorcontrib><creatorcontrib>Wang, Lei</creatorcontrib><creatorcontrib>Liu, Jifeng</creatorcontrib><creatorcontrib>Jia, Jianbo</creatorcontrib><title>Antioxidant Sensors Based on Iron Diethylenetriaminepentaacetic Acid, Hematin, and Hemoglobin Modified TiO2 Nanoparticle Printed Electrodes</title><title>Analytical chemistry (Washington)</title><addtitle>Anal. Chem</addtitle><description>Antioxidant amperometric sensors based on iron-containing complexes and protein modified electrodes were developed. Indium tin oxide glass was printed with TiO2 nanoparticles, onto which iron-containing compounds and protein were adsorbed. When applied with negative potentials, the dissolved oxygen is reduced to H2O2 at the electrode surface, and the H2O2 generated in situ oxidizes FeII to FeIII, and then electrochemical reduction of FeIII therefore gives rise to a catalytic current. In the presence of antioxidants, H2O2 was scavenged, the catalytic current was reduced, and the decreased current signal was proportional to the quantity of existing antioxidants. A kinetic model was proposed to quantify the H2O2 scavenging capacities of the antioxidants. With the use of the sensor developed here, antioxidant measurements can be done quite simply: put the sensor into the sample solutions (in aerobic atmosphere), perform a cathodic polarization scan, and then read the antioxidant activity values. The present work can be complementary to the previous studies of antioxidant sensor techniques based on OH radicals and superoxide ions scavenging methods, but the sensor developed here is much easier to fabricate and use.</description><subject>Analytical chemistry</subject><subject>Antioxidants - analysis</subject><subject>Antioxidants - chemistry</subject><subject>Biosensing Techniques - instrumentation</subject><subject>Biosensing Techniques - methods</subject><subject>Chemistry</subject><subject>Electrochemical methods</subject><subject>Electrodes</subject><subject>Exact sciences and technology</subject><subject>General, instrumentation</subject><subject>Hemin - chemistry</subject><subject>Hemoglobins - chemistry</subject><subject>Hydrogen Peroxide - metabolism</subject><subject>Iron - chemistry</subject><subject>Iron - metabolism</subject><subject>Kinetics</subject><subject>Metal Nanoparticles - chemistry</subject><subject>Metal Nanoparticles - ultrastructure</subject><subject>Oxidation-Reduction</subject><subject>Pentetic Acid - analogs & derivatives</subject><subject>Pentetic Acid - chemistry</subject><subject>Potentiometry</subject><subject>Tin Compounds - chemistry</subject><subject>Titanium - chemistry</subject><issn>0003-2700</issn><issn>1520-6882</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2009</creationdate><recordtype>article</recordtype><recordid>eNpFkcFOHDEMhiNEBVvogReocqEnpnUyM5nJcUtpQaJQqfQ88iQeGjSTLElWKs_Ql25Qt9QH_7L82ZL9M3Yi4L0AKT6g0QCthHaPrUTRSvW93GcrAKgr2QEcstcpPQAIAUIdsEOhG621gBX7vfbZhV_Oos_8O_kUYuIfMZHlwfOrWNInR_nn00yecnS4OE8b8hnRUHaGr42zZ_ySFszOn3H09rkI93MYnedfg3WTK8vu3K3kN-jDBmMZm4l_i87n0rmYyeQYLKVj9mrCOdGbnR6xH58v7s4vq-vbL1fn6-sKpdK5mtrRtDi2arSN7qjvVF0bMba2N1MnZa_NZEVLJIH6ZtTQqhIdNOUZhpSy9RF793fvJobHLaU8LC4Zmmf0FLZpUF0jO62bAr7dgdtxITtsolswPg3_3leA0x2AyeA8RfTGpRdOSui7BsR_Dk0aHsI2-nLfIGB4tm94sa_-A5mEipk</recordid><startdate>20090701</startdate><enddate>20090701</enddate><creator>Guo, Qingqing</creator><creator>Ji, Shujun</creator><creator>Yue, Qiaoli</creator><creator>Wang, Lei</creator><creator>Liu, Jifeng</creator><creator>Jia, Jianbo</creator><general>American Chemical Society</general><scope>IQODW</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>7X8</scope></search><sort><creationdate>20090701</creationdate><title>Antioxidant Sensors Based on Iron Diethylenetriaminepentaacetic Acid, Hematin, and Hemoglobin Modified TiO2 Nanoparticle Printed Electrodes</title><author>Guo, Qingqing ; Ji, Shujun ; Yue, Qiaoli ; Wang, Lei ; Liu, Jifeng ; Jia, Jianbo</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a269t-f5bc5ab56bd497e87633c1b5d8cf72289cfd15ee20e84b9056666704003ce66d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2009</creationdate><topic>Analytical chemistry</topic><topic>Antioxidants - analysis</topic><topic>Antioxidants - chemistry</topic><topic>Biosensing Techniques - instrumentation</topic><topic>Biosensing Techniques - methods</topic><topic>Chemistry</topic><topic>Electrochemical methods</topic><topic>Electrodes</topic><topic>Exact sciences and technology</topic><topic>General, instrumentation</topic><topic>Hemin - chemistry</topic><topic>Hemoglobins - chemistry</topic><topic>Hydrogen Peroxide - metabolism</topic><topic>Iron - chemistry</topic><topic>Iron - metabolism</topic><topic>Kinetics</topic><topic>Metal Nanoparticles - chemistry</topic><topic>Metal Nanoparticles - ultrastructure</topic><topic>Oxidation-Reduction</topic><topic>Pentetic Acid - analogs & derivatives</topic><topic>Pentetic Acid - chemistry</topic><topic>Potentiometry</topic><topic>Tin Compounds - chemistry</topic><topic>Titanium - chemistry</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Guo, Qingqing</creatorcontrib><creatorcontrib>Ji, Shujun</creatorcontrib><creatorcontrib>Yue, Qiaoli</creatorcontrib><creatorcontrib>Wang, Lei</creatorcontrib><creatorcontrib>Liu, Jifeng</creatorcontrib><creatorcontrib>Jia, Jianbo</creatorcontrib><collection>Pascal-Francis</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>MEDLINE - Academic</collection><jtitle>Analytical chemistry (Washington)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Guo, Qingqing</au><au>Ji, Shujun</au><au>Yue, Qiaoli</au><au>Wang, Lei</au><au>Liu, Jifeng</au><au>Jia, Jianbo</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Antioxidant Sensors Based on Iron Diethylenetriaminepentaacetic Acid, Hematin, and Hemoglobin Modified TiO2 Nanoparticle Printed Electrodes</atitle><jtitle>Analytical chemistry (Washington)</jtitle><addtitle>Anal. Chem</addtitle><date>2009-07-01</date><risdate>2009</risdate><volume>81</volume><issue>13</issue><spage>5381</spage><epage>5389</epage><pages>5381-5389</pages><issn>0003-2700</issn><eissn>1520-6882</eissn><coden>ANCHAM</coden><abstract>Antioxidant amperometric sensors based on iron-containing complexes and protein modified electrodes were developed. Indium tin oxide glass was printed with TiO2 nanoparticles, onto which iron-containing compounds and protein were adsorbed. When applied with negative potentials, the dissolved oxygen is reduced to H2O2 at the electrode surface, and the H2O2 generated in situ oxidizes FeII to FeIII, and then electrochemical reduction of FeIII therefore gives rise to a catalytic current. In the presence of antioxidants, H2O2 was scavenged, the catalytic current was reduced, and the decreased current signal was proportional to the quantity of existing antioxidants. A kinetic model was proposed to quantify the H2O2 scavenging capacities of the antioxidants. With the use of the sensor developed here, antioxidant measurements can be done quite simply: put the sensor into the sample solutions (in aerobic atmosphere), perform a cathodic polarization scan, and then read the antioxidant activity values. The present work can be complementary to the previous studies of antioxidant sensor techniques based on OH radicals and superoxide ions scavenging methods, but the sensor developed here is much easier to fabricate and use.</abstract><cop>Washington, DC</cop><pub>American Chemical Society</pub><pmid>19499910</pmid><doi>10.1021/ac9005205</doi><tpages>9</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0003-2700 |
ispartof | Analytical chemistry (Washington), 2009-07, Vol.81 (13), p.5381-5389 |
issn | 0003-2700 1520-6882 |
language | eng |
recordid | cdi_proquest_miscellaneous_67427994 |
source | American Chemical Society:Jisc Collections:American Chemical Society Read & Publish Agreement 2022-2024 (Reading list) |
subjects | Analytical chemistry Antioxidants - analysis Antioxidants - chemistry Biosensing Techniques - instrumentation Biosensing Techniques - methods Chemistry Electrochemical methods Electrodes Exact sciences and technology General, instrumentation Hemin - chemistry Hemoglobins - chemistry Hydrogen Peroxide - metabolism Iron - chemistry Iron - metabolism Kinetics Metal Nanoparticles - chemistry Metal Nanoparticles - ultrastructure Oxidation-Reduction Pentetic Acid - analogs & derivatives Pentetic Acid - chemistry Potentiometry Tin Compounds - chemistry Titanium - chemistry |
title | Antioxidant Sensors Based on Iron Diethylenetriaminepentaacetic Acid, Hematin, and Hemoglobin Modified TiO2 Nanoparticle Printed Electrodes |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-15T05%3A04%3A33IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Antioxidant%20Sensors%20Based%20on%20Iron%20Diethylenetriaminepentaacetic%20Acid,%20Hematin,%20and%20Hemoglobin%20Modified%20TiO2%20Nanoparticle%20Printed%20Electrodes&rft.jtitle=Analytical%20chemistry%20(Washington)&rft.au=Guo,%20Qingqing&rft.date=2009-07-01&rft.volume=81&rft.issue=13&rft.spage=5381&rft.epage=5389&rft.pages=5381-5389&rft.issn=0003-2700&rft.eissn=1520-6882&rft.coden=ANCHAM&rft_id=info:doi/10.1021/ac9005205&rft_dat=%3Cproquest_pubme%3E67427994%3C/proquest_pubme%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-a269t-f5bc5ab56bd497e87633c1b5d8cf72289cfd15ee20e84b9056666704003ce66d3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=67427994&rft_id=info:pmid/19499910&rfr_iscdi=true |