Loading…
6-[1-(4-Fluorophenyl)methyl-1 H-pyrrol-2-yl)]-2,4-dioxo-5-hexenoic acid ethyl ester a novel diketo acid derivative which selectively inhibits the HIV-1 viral replication in cell culture and the ribonuclease H activity in vitro
The human immunodeficiency virus-type 1 (HIV-1) reverse transcriptase (RT) is a multifunctional enzyme which displays DNA polymerase activity, which recognizes RNA and DNA templates, and a degradative ribonuclease H (RNase H) activity. While both RT functions are required for retroviral replication,...
Saved in:
Published in: | Antiviral research 2005-02, Vol.65 (2), p.117-124 |
---|---|
Main Authors: | , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | The human immunodeficiency virus-type 1 (HIV-1) reverse transcriptase (RT) is a multifunctional enzyme which displays DNA polymerase activity, which recognizes RNA and DNA templates, and a degradative ribonuclease H (RNase H) activity. While both RT functions are required for retroviral replication, until now only the polymerase function has been widely explored as drug target. We have identified a novel diketo acid derivative, 6-[1-(4-fluorophenyl)methyl-1
H-pyrrol-2-yl)]-2,4-dioxo-5-hexenoic acid ethyl ester (RDS 1643), which inhibits in enzyme assays the HIV-1 RT-associated polymerase-independent RNase H activity but has no effect on the HIV-1 RT-associated RNA-dependent DNA polymerase (RDDP) activity and on the RNase H activities displayed by the Avian Myeloblastosis Virus and
E. coli. Time-dependence studies revealed that the compound is active independently on the order of its addition to the reaction mixture, and inhibition kinetics studies demonstrated that RDS 1643 inhibits the RNase H activity noncompetitively, with a
K
I value of 17
μM. When RDS 1643 was combined with non-nucleoside RT inhibitors (NNRTI), such as efavirenz and nevirapine, results indicated that RDS 1643 does not affect the NNRTIs anti-RDDP activity and that, vice versa, the NNRTIs do not alter the RNase H inhibition by RDS 1643. When assayed on the viral replication in cell-based assays, RDS 1643 inhibited the HIV-1
IIIB strain with an EC
50 of 14
μM. Similar results were obtained against the Y181C and Y181C/K103N HIV-1 NNRTI resistant mutant strains. RDS 1643 may be the first HIV-1 inhibitor selectively targeted to the viral RT-associated RNase-H function. |
---|---|
ISSN: | 0166-3542 1872-9096 |
DOI: | 10.1016/j.antiviral.2004.11.002 |