Loading…

In vitro and in vivo analyses of human embryonic stem cell‐derived dopamine neurons

Human embryonic stem (hES) cells, due to their capacity of multipotency and self‐renewal, may serve as a valuable experimental tool for human developmental biology and may provide an unlimited cell source for cell replacement therapy. The purpose of this study was to assess the developmental potenti...

Full description

Saved in:
Bibliographic Details
Published in:Journal of neurochemistry 2005-03, Vol.92 (5), p.1265-1276
Main Authors: Park, Chang‐Hwan, Minn, Yang‐Ki, Lee, Ji‐Yeon, Choi, Dong Ho, Chang, Mi‐Yoon, Shim, Jae‐Won, Ko, Ji‐Yun, Koh, Hyun‐Chul, Kang, Min Jeong, Kang, Jin Sun, Rhie, Duck‐Joo, Lee, Yong‐Sung, Son, Hyeon, Moon, Shin Yong, Kim, Kwang‐Soo, Lee, Sang‐Hun
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c3976-93af675d8a83b6970ef63cf71e82d0abe17c59a3e7dee8a3f54f81d2a22869ce3
cites cdi_FETCH-LOGICAL-c3976-93af675d8a83b6970ef63cf71e82d0abe17c59a3e7dee8a3f54f81d2a22869ce3
container_end_page 1276
container_issue 5
container_start_page 1265
container_title Journal of neurochemistry
container_volume 92
creator Park, Chang‐Hwan
Minn, Yang‐Ki
Lee, Ji‐Yeon
Choi, Dong Ho
Chang, Mi‐Yoon
Shim, Jae‐Won
Ko, Ji‐Yun
Koh, Hyun‐Chul
Kang, Min Jeong
Kang, Jin Sun
Rhie, Duck‐Joo
Lee, Yong‐Sung
Son, Hyeon
Moon, Shin Yong
Kim, Kwang‐Soo
Lee, Sang‐Hun
description Human embryonic stem (hES) cells, due to their capacity of multipotency and self‐renewal, may serve as a valuable experimental tool for human developmental biology and may provide an unlimited cell source for cell replacement therapy. The purpose of this study was to assess the developmental potential of hES cells to replace the selectively lost midbrain dopamine (DA) neurons in Parkinson's disease. Here, we report the development of an in vitro differentiation protocol to derive an enriched population of midbrain DA neurons from hES cells. Neural induction of hES cells co‐cultured with stromal cells, followed by expansion of the resulting neural precursor cells, efficiently generated DA neurons with concomitant expression of transcriptional factors related to midbrain DA development, such as Pax2, En1 (Engrailed‐1), Nurr1, and Lmx1b. Using our procedure, the majority of differentiated hES cells (> 95%) contained neuronal or neural precursor markers and a high percentage (> 40%) of TuJ1+ neurons was tyrosine hydroxylase (TH)+, while none of them expressed the undifferentiated ES cell marker, Oct 3/4. Furthermore, hES cell‐derived DA neurons demonstrated functionality in vitro, releasing DA in response to KCl‐induced depolarization and reuptake of DA. Finally, transplantation of hES‐derived DA neurons into the striatum of hemi‐parkinsonian rats failed to result in improvement of their behavioral deficits as determined by amphetamine‐induced rotation and step‐adjustment. Immunohistochemical analyses of grafted brains revealed that abundant hES‐derived cells (human nuclei+ cells) survived in the grafts, but none of them were TH+. Therefore, unlike those from mouse ES cells, hES cell‐derived DA neurons either do not survive or their DA phenotype is unstable when grafted into rodent brains.
doi_str_mv 10.1111/j.1471-4159.2004.03006.x
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_67440214</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>67440214</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3976-93af675d8a83b6970ef63cf71e82d0abe17c59a3e7dee8a3f54f81d2a22869ce3</originalsourceid><addsrcrecordid>eNqNkEtu2zAQhomiReM8rhBw0-6k8CVSWmRRGHkiaDfNmqDJIUJDohzScuJdjpAz5iSRYqPZlhvOYL4hf3wIYUpKOp6zZUmFooWgVVMyQkRJOCGyfP6CZv8GX9GMEMYKTgQ7QIc5LwmhUkj6HR3QStFKqmqG7m8i3oR16rGJDoep2Uy1abcZMu49fhg6EzF0i7TtY7A4r6HDFtr27eXVQQobcNj1K9OFCDjCkPqYj9E3b9oMJ_v7CN1fXvydXxd3f65u5r_uCssbJYuGGz-mcLWp-UI2ioCX3HpFoWaOmAVQZavGcFAOoDbcV8LX1DHDWC0bC_wI_dy9u0r94wB5rbuQp2wmQj9kLZUQhFExgvUOtKnPOYHXqxQ6k7aaEj0p1Us9mdOTOT0p1R9K9fO4err_Y1h04D4X9w5H4MceMNma1icTbcifnKw4qRQfufMd9xRa2P53AH37ez5V_B2Bv5NC</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>67440214</pqid></control><display><type>article</type><title>In vitro and in vivo analyses of human embryonic stem cell‐derived dopamine neurons</title><source>Wiley-Blackwell Read &amp; Publish Collection</source><source>Free Full-Text Journals in Chemistry</source><creator>Park, Chang‐Hwan ; Minn, Yang‐Ki ; Lee, Ji‐Yeon ; Choi, Dong Ho ; Chang, Mi‐Yoon ; Shim, Jae‐Won ; Ko, Ji‐Yun ; Koh, Hyun‐Chul ; Kang, Min Jeong ; Kang, Jin Sun ; Rhie, Duck‐Joo ; Lee, Yong‐Sung ; Son, Hyeon ; Moon, Shin Yong ; Kim, Kwang‐Soo ; Lee, Sang‐Hun</creator><creatorcontrib>Park, Chang‐Hwan ; Minn, Yang‐Ki ; Lee, Ji‐Yeon ; Choi, Dong Ho ; Chang, Mi‐Yoon ; Shim, Jae‐Won ; Ko, Ji‐Yun ; Koh, Hyun‐Chul ; Kang, Min Jeong ; Kang, Jin Sun ; Rhie, Duck‐Joo ; Lee, Yong‐Sung ; Son, Hyeon ; Moon, Shin Yong ; Kim, Kwang‐Soo ; Lee, Sang‐Hun</creatorcontrib><description>Human embryonic stem (hES) cells, due to their capacity of multipotency and self‐renewal, may serve as a valuable experimental tool for human developmental biology and may provide an unlimited cell source for cell replacement therapy. The purpose of this study was to assess the developmental potential of hES cells to replace the selectively lost midbrain dopamine (DA) neurons in Parkinson's disease. Here, we report the development of an in vitro differentiation protocol to derive an enriched population of midbrain DA neurons from hES cells. Neural induction of hES cells co‐cultured with stromal cells, followed by expansion of the resulting neural precursor cells, efficiently generated DA neurons with concomitant expression of transcriptional factors related to midbrain DA development, such as Pax2, En1 (Engrailed‐1), Nurr1, and Lmx1b. Using our procedure, the majority of differentiated hES cells (&gt; 95%) contained neuronal or neural precursor markers and a high percentage (&gt; 40%) of TuJ1+ neurons was tyrosine hydroxylase (TH)+, while none of them expressed the undifferentiated ES cell marker, Oct 3/4. Furthermore, hES cell‐derived DA neurons demonstrated functionality in vitro, releasing DA in response to KCl‐induced depolarization and reuptake of DA. Finally, transplantation of hES‐derived DA neurons into the striatum of hemi‐parkinsonian rats failed to result in improvement of their behavioral deficits as determined by amphetamine‐induced rotation and step‐adjustment. Immunohistochemical analyses of grafted brains revealed that abundant hES‐derived cells (human nuclei+ cells) survived in the grafts, but none of them were TH+. Therefore, unlike those from mouse ES cells, hES cell‐derived DA neurons either do not survive or their DA phenotype is unstable when grafted into rodent brains.</description><identifier>ISSN: 0022-3042</identifier><identifier>EISSN: 1471-4159</identifier><identifier>DOI: 10.1111/j.1471-4159.2004.03006.x</identifier><identifier>PMID: 15715675</identifier><identifier>CODEN: JONRA9</identifier><language>eng</language><publisher>Oxford, UK: Blackwell Science Ltd</publisher><subject>Animals ; Biological and medical sciences ; Cell Differentiation - drug effects ; Cell Differentiation - physiology ; Cells, Cultured ; Degenerative and inherited degenerative diseases of the nervous system. Leukodystrophies. Prion diseases ; Dopamine - biosynthesis ; Dopamine - metabolism ; dopamine neurons ; Embryonic Induction ; Embryonic Stem Cells - cytology ; Embryonic Stem Cells - physiology ; Fibroblast Growth Factors - pharmacology ; Gene Expression Regulation, Developmental ; human embryonic stem cells ; Humans ; in vitro differentiation ; Medical sciences ; Mesencephalon - cytology ; Mesencephalon - embryology ; Nerve Tissue Proteins - metabolism ; Nervous system (semeiology, syndromes) ; Nervous system as a whole ; Neurology ; Neurons - cytology ; Neurons - metabolism ; Parkinson's disease ; Rats ; Rats, Sprague-Dawley ; transplantation</subject><ispartof>Journal of neurochemistry, 2005-03, Vol.92 (5), p.1265-1276</ispartof><rights>2006 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3976-93af675d8a83b6970ef63cf71e82d0abe17c59a3e7dee8a3f54f81d2a22869ce3</citedby><cites>FETCH-LOGICAL-c3976-93af675d8a83b6970ef63cf71e82d0abe17c59a3e7dee8a3f54f81d2a22869ce3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=16530573$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/15715675$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Park, Chang‐Hwan</creatorcontrib><creatorcontrib>Minn, Yang‐Ki</creatorcontrib><creatorcontrib>Lee, Ji‐Yeon</creatorcontrib><creatorcontrib>Choi, Dong Ho</creatorcontrib><creatorcontrib>Chang, Mi‐Yoon</creatorcontrib><creatorcontrib>Shim, Jae‐Won</creatorcontrib><creatorcontrib>Ko, Ji‐Yun</creatorcontrib><creatorcontrib>Koh, Hyun‐Chul</creatorcontrib><creatorcontrib>Kang, Min Jeong</creatorcontrib><creatorcontrib>Kang, Jin Sun</creatorcontrib><creatorcontrib>Rhie, Duck‐Joo</creatorcontrib><creatorcontrib>Lee, Yong‐Sung</creatorcontrib><creatorcontrib>Son, Hyeon</creatorcontrib><creatorcontrib>Moon, Shin Yong</creatorcontrib><creatorcontrib>Kim, Kwang‐Soo</creatorcontrib><creatorcontrib>Lee, Sang‐Hun</creatorcontrib><title>In vitro and in vivo analyses of human embryonic stem cell‐derived dopamine neurons</title><title>Journal of neurochemistry</title><addtitle>J Neurochem</addtitle><description>Human embryonic stem (hES) cells, due to their capacity of multipotency and self‐renewal, may serve as a valuable experimental tool for human developmental biology and may provide an unlimited cell source for cell replacement therapy. The purpose of this study was to assess the developmental potential of hES cells to replace the selectively lost midbrain dopamine (DA) neurons in Parkinson's disease. Here, we report the development of an in vitro differentiation protocol to derive an enriched population of midbrain DA neurons from hES cells. Neural induction of hES cells co‐cultured with stromal cells, followed by expansion of the resulting neural precursor cells, efficiently generated DA neurons with concomitant expression of transcriptional factors related to midbrain DA development, such as Pax2, En1 (Engrailed‐1), Nurr1, and Lmx1b. Using our procedure, the majority of differentiated hES cells (&gt; 95%) contained neuronal or neural precursor markers and a high percentage (&gt; 40%) of TuJ1+ neurons was tyrosine hydroxylase (TH)+, while none of them expressed the undifferentiated ES cell marker, Oct 3/4. Furthermore, hES cell‐derived DA neurons demonstrated functionality in vitro, releasing DA in response to KCl‐induced depolarization and reuptake of DA. Finally, transplantation of hES‐derived DA neurons into the striatum of hemi‐parkinsonian rats failed to result in improvement of their behavioral deficits as determined by amphetamine‐induced rotation and step‐adjustment. Immunohistochemical analyses of grafted brains revealed that abundant hES‐derived cells (human nuclei+ cells) survived in the grafts, but none of them were TH+. Therefore, unlike those from mouse ES cells, hES cell‐derived DA neurons either do not survive or their DA phenotype is unstable when grafted into rodent brains.</description><subject>Animals</subject><subject>Biological and medical sciences</subject><subject>Cell Differentiation - drug effects</subject><subject>Cell Differentiation - physiology</subject><subject>Cells, Cultured</subject><subject>Degenerative and inherited degenerative diseases of the nervous system. Leukodystrophies. Prion diseases</subject><subject>Dopamine - biosynthesis</subject><subject>Dopamine - metabolism</subject><subject>dopamine neurons</subject><subject>Embryonic Induction</subject><subject>Embryonic Stem Cells - cytology</subject><subject>Embryonic Stem Cells - physiology</subject><subject>Fibroblast Growth Factors - pharmacology</subject><subject>Gene Expression Regulation, Developmental</subject><subject>human embryonic stem cells</subject><subject>Humans</subject><subject>in vitro differentiation</subject><subject>Medical sciences</subject><subject>Mesencephalon - cytology</subject><subject>Mesencephalon - embryology</subject><subject>Nerve Tissue Proteins - metabolism</subject><subject>Nervous system (semeiology, syndromes)</subject><subject>Nervous system as a whole</subject><subject>Neurology</subject><subject>Neurons - cytology</subject><subject>Neurons - metabolism</subject><subject>Parkinson's disease</subject><subject>Rats</subject><subject>Rats, Sprague-Dawley</subject><subject>transplantation</subject><issn>0022-3042</issn><issn>1471-4159</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2005</creationdate><recordtype>article</recordtype><recordid>eNqNkEtu2zAQhomiReM8rhBw0-6k8CVSWmRRGHkiaDfNmqDJIUJDohzScuJdjpAz5iSRYqPZlhvOYL4hf3wIYUpKOp6zZUmFooWgVVMyQkRJOCGyfP6CZv8GX9GMEMYKTgQ7QIc5LwmhUkj6HR3QStFKqmqG7m8i3oR16rGJDoep2Uy1abcZMu49fhg6EzF0i7TtY7A4r6HDFtr27eXVQQobcNj1K9OFCDjCkPqYj9E3b9oMJ_v7CN1fXvydXxd3f65u5r_uCssbJYuGGz-mcLWp-UI2ioCX3HpFoWaOmAVQZavGcFAOoDbcV8LX1DHDWC0bC_wI_dy9u0r94wB5rbuQp2wmQj9kLZUQhFExgvUOtKnPOYHXqxQ6k7aaEj0p1Us9mdOTOT0p1R9K9fO4err_Y1h04D4X9w5H4MceMNma1icTbcifnKw4qRQfufMd9xRa2P53AH37ez5V_B2Bv5NC</recordid><startdate>200503</startdate><enddate>200503</enddate><creator>Park, Chang‐Hwan</creator><creator>Minn, Yang‐Ki</creator><creator>Lee, Ji‐Yeon</creator><creator>Choi, Dong Ho</creator><creator>Chang, Mi‐Yoon</creator><creator>Shim, Jae‐Won</creator><creator>Ko, Ji‐Yun</creator><creator>Koh, Hyun‐Chul</creator><creator>Kang, Min Jeong</creator><creator>Kang, Jin Sun</creator><creator>Rhie, Duck‐Joo</creator><creator>Lee, Yong‐Sung</creator><creator>Son, Hyeon</creator><creator>Moon, Shin Yong</creator><creator>Kim, Kwang‐Soo</creator><creator>Lee, Sang‐Hun</creator><general>Blackwell Science Ltd</general><general>Blackwell</general><scope>IQODW</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope></search><sort><creationdate>200503</creationdate><title>In vitro and in vivo analyses of human embryonic stem cell‐derived dopamine neurons</title><author>Park, Chang‐Hwan ; Minn, Yang‐Ki ; Lee, Ji‐Yeon ; Choi, Dong Ho ; Chang, Mi‐Yoon ; Shim, Jae‐Won ; Ko, Ji‐Yun ; Koh, Hyun‐Chul ; Kang, Min Jeong ; Kang, Jin Sun ; Rhie, Duck‐Joo ; Lee, Yong‐Sung ; Son, Hyeon ; Moon, Shin Yong ; Kim, Kwang‐Soo ; Lee, Sang‐Hun</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3976-93af675d8a83b6970ef63cf71e82d0abe17c59a3e7dee8a3f54f81d2a22869ce3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2005</creationdate><topic>Animals</topic><topic>Biological and medical sciences</topic><topic>Cell Differentiation - drug effects</topic><topic>Cell Differentiation - physiology</topic><topic>Cells, Cultured</topic><topic>Degenerative and inherited degenerative diseases of the nervous system. Leukodystrophies. Prion diseases</topic><topic>Dopamine - biosynthesis</topic><topic>Dopamine - metabolism</topic><topic>dopamine neurons</topic><topic>Embryonic Induction</topic><topic>Embryonic Stem Cells - cytology</topic><topic>Embryonic Stem Cells - physiology</topic><topic>Fibroblast Growth Factors - pharmacology</topic><topic>Gene Expression Regulation, Developmental</topic><topic>human embryonic stem cells</topic><topic>Humans</topic><topic>in vitro differentiation</topic><topic>Medical sciences</topic><topic>Mesencephalon - cytology</topic><topic>Mesencephalon - embryology</topic><topic>Nerve Tissue Proteins - metabolism</topic><topic>Nervous system (semeiology, syndromes)</topic><topic>Nervous system as a whole</topic><topic>Neurology</topic><topic>Neurons - cytology</topic><topic>Neurons - metabolism</topic><topic>Parkinson's disease</topic><topic>Rats</topic><topic>Rats, Sprague-Dawley</topic><topic>transplantation</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Park, Chang‐Hwan</creatorcontrib><creatorcontrib>Minn, Yang‐Ki</creatorcontrib><creatorcontrib>Lee, Ji‐Yeon</creatorcontrib><creatorcontrib>Choi, Dong Ho</creatorcontrib><creatorcontrib>Chang, Mi‐Yoon</creatorcontrib><creatorcontrib>Shim, Jae‐Won</creatorcontrib><creatorcontrib>Ko, Ji‐Yun</creatorcontrib><creatorcontrib>Koh, Hyun‐Chul</creatorcontrib><creatorcontrib>Kang, Min Jeong</creatorcontrib><creatorcontrib>Kang, Jin Sun</creatorcontrib><creatorcontrib>Rhie, Duck‐Joo</creatorcontrib><creatorcontrib>Lee, Yong‐Sung</creatorcontrib><creatorcontrib>Son, Hyeon</creatorcontrib><creatorcontrib>Moon, Shin Yong</creatorcontrib><creatorcontrib>Kim, Kwang‐Soo</creatorcontrib><creatorcontrib>Lee, Sang‐Hun</creatorcontrib><collection>Pascal-Francis</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Journal of neurochemistry</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Park, Chang‐Hwan</au><au>Minn, Yang‐Ki</au><au>Lee, Ji‐Yeon</au><au>Choi, Dong Ho</au><au>Chang, Mi‐Yoon</au><au>Shim, Jae‐Won</au><au>Ko, Ji‐Yun</au><au>Koh, Hyun‐Chul</au><au>Kang, Min Jeong</au><au>Kang, Jin Sun</au><au>Rhie, Duck‐Joo</au><au>Lee, Yong‐Sung</au><au>Son, Hyeon</au><au>Moon, Shin Yong</au><au>Kim, Kwang‐Soo</au><au>Lee, Sang‐Hun</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>In vitro and in vivo analyses of human embryonic stem cell‐derived dopamine neurons</atitle><jtitle>Journal of neurochemistry</jtitle><addtitle>J Neurochem</addtitle><date>2005-03</date><risdate>2005</risdate><volume>92</volume><issue>5</issue><spage>1265</spage><epage>1276</epage><pages>1265-1276</pages><issn>0022-3042</issn><eissn>1471-4159</eissn><coden>JONRA9</coden><abstract>Human embryonic stem (hES) cells, due to their capacity of multipotency and self‐renewal, may serve as a valuable experimental tool for human developmental biology and may provide an unlimited cell source for cell replacement therapy. The purpose of this study was to assess the developmental potential of hES cells to replace the selectively lost midbrain dopamine (DA) neurons in Parkinson's disease. Here, we report the development of an in vitro differentiation protocol to derive an enriched population of midbrain DA neurons from hES cells. Neural induction of hES cells co‐cultured with stromal cells, followed by expansion of the resulting neural precursor cells, efficiently generated DA neurons with concomitant expression of transcriptional factors related to midbrain DA development, such as Pax2, En1 (Engrailed‐1), Nurr1, and Lmx1b. Using our procedure, the majority of differentiated hES cells (&gt; 95%) contained neuronal or neural precursor markers and a high percentage (&gt; 40%) of TuJ1+ neurons was tyrosine hydroxylase (TH)+, while none of them expressed the undifferentiated ES cell marker, Oct 3/4. Furthermore, hES cell‐derived DA neurons demonstrated functionality in vitro, releasing DA in response to KCl‐induced depolarization and reuptake of DA. Finally, transplantation of hES‐derived DA neurons into the striatum of hemi‐parkinsonian rats failed to result in improvement of their behavioral deficits as determined by amphetamine‐induced rotation and step‐adjustment. Immunohistochemical analyses of grafted brains revealed that abundant hES‐derived cells (human nuclei+ cells) survived in the grafts, but none of them were TH+. Therefore, unlike those from mouse ES cells, hES cell‐derived DA neurons either do not survive or their DA phenotype is unstable when grafted into rodent brains.</abstract><cop>Oxford, UK</cop><pub>Blackwell Science Ltd</pub><pmid>15715675</pmid><doi>10.1111/j.1471-4159.2004.03006.x</doi><tpages>12</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0022-3042
ispartof Journal of neurochemistry, 2005-03, Vol.92 (5), p.1265-1276
issn 0022-3042
1471-4159
language eng
recordid cdi_proquest_miscellaneous_67440214
source Wiley-Blackwell Read & Publish Collection; Free Full-Text Journals in Chemistry
subjects Animals
Biological and medical sciences
Cell Differentiation - drug effects
Cell Differentiation - physiology
Cells, Cultured
Degenerative and inherited degenerative diseases of the nervous system. Leukodystrophies. Prion diseases
Dopamine - biosynthesis
Dopamine - metabolism
dopamine neurons
Embryonic Induction
Embryonic Stem Cells - cytology
Embryonic Stem Cells - physiology
Fibroblast Growth Factors - pharmacology
Gene Expression Regulation, Developmental
human embryonic stem cells
Humans
in vitro differentiation
Medical sciences
Mesencephalon - cytology
Mesencephalon - embryology
Nerve Tissue Proteins - metabolism
Nervous system (semeiology, syndromes)
Nervous system as a whole
Neurology
Neurons - cytology
Neurons - metabolism
Parkinson's disease
Rats
Rats, Sprague-Dawley
transplantation
title In vitro and in vivo analyses of human embryonic stem cell‐derived dopamine neurons
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-19T10%3A21%3A49IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=In%20vitro%20and%20in%20vivo%20analyses%20of%20human%20embryonic%20stem%20cell%E2%80%90derived%20dopamine%20neurons&rft.jtitle=Journal%20of%20neurochemistry&rft.au=Park,%20Chang%E2%80%90Hwan&rft.date=2005-03&rft.volume=92&rft.issue=5&rft.spage=1265&rft.epage=1276&rft.pages=1265-1276&rft.issn=0022-3042&rft.eissn=1471-4159&rft.coden=JONRA9&rft_id=info:doi/10.1111/j.1471-4159.2004.03006.x&rft_dat=%3Cproquest_cross%3E67440214%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c3976-93af675d8a83b6970ef63cf71e82d0abe17c59a3e7dee8a3f54f81d2a22869ce3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=67440214&rft_id=info:pmid/15715675&rfr_iscdi=true