Loading…
Regulation of the Ca2+ Sensitivity of the Nonselective Cation Channel TRPM4
TRPM4, a Ca2+-activated cation channel of the transient receptor potential superfamily, undergoes a fast desensitization to Ca2+. The mechanisms underlying the alterations in Ca2+ sensitivity are unknown. Here we show that cytoplasmic ATP reversed Ca2+ sensitivity after desensitization, whereas muta...
Saved in:
Published in: | The Journal of biological chemistry 2005-02, Vol.280 (8), p.6423-6433 |
---|---|
Main Authors: | , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | TRPM4, a Ca2+-activated cation channel of the transient receptor potential superfamily, undergoes a fast desensitization to Ca2+. The mechanisms underlying the alterations in Ca2+ sensitivity are unknown. Here we show that cytoplasmic ATP reversed Ca2+ sensitivity after desensitization, whereas mutations to putative ATP binding sites resulted in faster and more complete desensitization. Phorbol ester-induced activation of protein kinase C (PKC) increased the Ca2+ sensitivity of wild-type TRPM4 but not of two mutants mutated at putative PKC phosphorylation sites. Overexpression of a calmodulin mutant unable to bind Ca2+ dramatically reduced TRPM4 activation. We identified five Ca2+-calmodulin binding sites in TRPM4 and showed that deletion of any of the three C-terminal sites strongly impaired current activation by reducing Ca2+ sensitivity and shifting the voltage dependence of activation to very positive potentials. Thus, the Ca2+ sensitivity of TRPM4 is regulated by ATP, PKC-dependent phosphorylation, and calmodulin binding at the C terminus. |
---|---|
ISSN: | 0021-9258 1083-351X |
DOI: | 10.1074/jbc.M411089200 |