Loading…

Alterations of the growth plate in chronic renal failure

Chronic renal failure modifies the morphology and dynamics of the growth plate (GP) of long bones. In young uremic rats, the height of cartilage columns of GP may vary markedly. The reasons for this variation are unknown, although the severity and duration of renal failure and the type of renal oste...

Full description

Saved in:
Bibliographic Details
Published in:Pediatric nephrology (Berlin, West) West), 2005-03, Vol.20 (3), p.330-334
Main Authors: Santos, Fernando, Carbajo-Pérez, Eduardo, Rodríguez, Julián, Fernández-Fuente, Marta, Molinos, Inés, Amil, Benito, García, Enrique
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Chronic renal failure modifies the morphology and dynamics of the growth plate (GP) of long bones. In young uremic rats, the height of cartilage columns of GP may vary markedly. The reasons for this variation are unknown, although the severity and duration of renal failure and the type of renal osteodystrophy have been shown to influence the height of GP cartilage. Expansion of GP cartilage is associated with that of the hypertrophic stratum. The interference of uremia with the process of chondrocyte differentiation is suggested by some morphological features. However, analysis by immunohistochemistry and/or in situ hybridization of markers of chondrocyte maturation in the GP of uremic rats has yielded conflicting results. Thus, there have been reported normal and reduced mRNA levels for collagen X, parathyroid hormone/parathyroid hormone-related peptide receptor, and matrix metalloproteinase 9, as well as normal mRNA and protein expression for vascular endothelial growth factor and chondromodulin I, peptides related to the control of angiogenesis. In addition, a decreased immunohistochemical signal for growth hormone receptor and low insulin-like growth factor I mRNA in the proliferative zone of uremic GP are supportive of reduced chondrocyte proliferation. Growth hormone treatment improves chondrocyte maturation and activates bone metabolism in the primary spongiosa.
ISSN:0931-041X
1432-198X
DOI:10.1007/s00467-004-1652-4