Loading…
Grating induced transparency (GIT) and the dark mode in optical waveguides
We propose and describe a new class of optical modes consisting of superposition of three waveguide modes which can be supported by a few-mode waveguide spatially modulated by two co-spatial gratings. These supermodes bear a close, but not exact, formal analogy to the three-level quantum states invo...
Saved in:
Published in: | Optics express 2009-07, Vol.17 (14), p.11710-11718 |
---|---|
Main Authors: | , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | We propose and describe a new class of optical modes consisting of superposition of three waveguide modes which can be supported by a few-mode waveguide spatially modulated by two co-spatial gratings. These supermodes bear a close, but not exact, formal analogy to the three-level quantum states involved in EIT and its attendant slow light propagation characteristics. Of particular interest is the supermode which we call the dark mode in which, in analogy with the dark state of EIT, one of the three uncoupled waveguide modes is not excited. This mode has unique dispersion characteristics that translate into a slow light propagation which possesses high bandwidth-delay product and can form the basis for a new generation of optical resonators and lasers. |
---|---|
ISSN: | 1094-4087 1094-4087 |
DOI: | 10.1364/oe.17.011710 |