Loading…
Theoretical Study of Photochromic Compounds. 1. Bond Length Alternation and Absorption Spectra for the Open and Closed Forms of 29 Diarylethene Derivatives
We apply several exchange−correlation functionals in combination with time-dependent density functional theory to predict the maximum wavelengths in the absorption spectra for 29 diarylethene derivatives in both open and closed isomeric forms. Solvent effects and accurate molecular geometries are fo...
Saved in:
Published in: | The journal of physical chemistry. A, Molecules, spectroscopy, kinetics, environment, & general theory Molecules, spectroscopy, kinetics, environment, & general theory, 2009-07, Vol.113 (29), p.8409-8414 |
---|---|
Main Authors: | , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | We apply several exchange−correlation functionals in combination with time-dependent density functional theory to predict the maximum wavelengths in the absorption spectra for 29 diarylethene derivatives in both open and closed isomeric forms. Solvent effects and accurate molecular geometries are found to be important to obtain good agreement with experimental absorption wavelengths. In order to evaluate the quality of geometry optimization, we compare predicted bond length alternation parameters with experimental ones. We find the TD-M05/6-31G*/PCM//M05-2x/6-31G*/PCM theory level to give the best predictions for the structural and spectral parameters of the diarylethene derivatives. Applications of the photochromic diarylethene compounds as materials for optical switching and data storage based on their photocyclization properties are also discussed. |
---|---|
ISSN: | 1089-5639 1520-5215 |
DOI: | 10.1021/jp900485p |