Loading…
Structure of MFP2 and its Function in Enhancing MSP Polymerization in Ascaris Sperm Amoeboid Motility
The simplicity and specialization of the cell motility machinery of Ascaris sperm provides a powerful system in which to probe the basic molecular mechanism of amoeboid cell motility. Although Ascaris sperm locomotion closely resembles that seen in many other types of crawling cell, movement is gene...
Saved in:
Published in: | Journal of molecular biology 2005-04, Vol.347 (3), p.583-595 |
---|---|
Main Authors: | , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c417t-9b4cfa04765a45b4623f8f5a58efffdf9d90e53fffa87e691ec368ff749755b23 |
---|---|
cites | cdi_FETCH-LOGICAL-c417t-9b4cfa04765a45b4623f8f5a58efffdf9d90e53fffa87e691ec368ff749755b23 |
container_end_page | 595 |
container_issue | 3 |
container_start_page | 583 |
container_title | Journal of molecular biology |
container_volume | 347 |
creator | Grant, Richard P. Buttery, Shawnna M. Ekman, Gail C. Roberts, Thomas M. Stewart, Murray |
description | The simplicity and specialization of the cell motility machinery of
Ascaris sperm provides a powerful system in which to probe the basic molecular mechanism of amoeboid cell motility. Although
Ascaris sperm locomotion closely resembles that seen in many other types of crawling cell, movement is generated by modulation of a cytoskeleton based on the major sperm protein (MSP) rather than the actin present in other cell types. The
Ascaris motility machinery can be studied conveniently in a cell-free
in vitro system based on the movement of plasma membrane vesicles by fibres constructed from bundles of MSP filaments. In addition to ATP, MSP and a plasma membrane protein, reconstitution of MSP motility in this cell-free extract requires cytosolic proteins to orchestrate the site-specific assembly and bundling of MSP filaments that generates locomotion. One of these proteins, MFP2, accelerates the rate of movement in this assay. Here, we describe crystal structures of two isoforms of MFP2 and show that both are constructed from two domains that have the same fold based on a novel, compact beta sheet arrangement. Patterns of conservation observed in a structure-based analysis of MFP2 sequences from different nematode species identified regions that may be putative functional interfaces involved both in interactions between MFP2 domains and also with other components of the sperm motility machinery. Analysis of the growth of fibres
in vitro in the presence of added MFP2 indicated that MFP2 increases the rate of locomotion by enhancing the effective rate of MSP filament polymerization. This observation, together with the structural data, suggests that MFP2 may function in a manner analogous to formins in actin-based motility. |
doi_str_mv | 10.1016/j.jmb.2005.01.054 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_67497581</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0022283605000999</els_id><sourcerecordid>67497581</sourcerecordid><originalsourceid>FETCH-LOGICAL-c417t-9b4cfa04765a45b4623f8f5a58efffdf9d90e53fffa87e691ec368ff749755b23</originalsourceid><addsrcrecordid>eNp9kMFq3DAQhkVIabZJHyCXolNudiVbsmV6WkI2LWTJwjZnIcujRIstbSW5sH36KNktvfU0A_P9P8yH0DUlJSW0-bord1NfVoTwktCScHaGFpSIrhBNLc7RgpCqKipRNxfoU4w7ksGaiY_ogvKWc8arBYJtCrNOcwDsDV6vNhVWbsA2RbyanU7WO2wdvnMvymnrnvF6u8EbPx4mCPaP-ntfRq2CjXi7hzDh5eSh93bAa5_saNPhCn0waozw-TQv0dPq7uft9-Lh8f7H7fKh0Iy2qeh6po0irG24YrxnTVUbYbjiAowxg-mGjgCv865EC01HQdeNMKZlXf6nr-pLdHPs3Qf_a4aY5GSjhnFUDvwcZfNOCppBegR18DEGMHIf7KTCQVIi39zKncxu5ZtbSajMbnPmy6l87icY_iVOMjPw7QhAfvG3hSCjtuA0DDaATnLw9j_1r7-6inI</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>67497581</pqid></control><display><type>article</type><title>Structure of MFP2 and its Function in Enhancing MSP Polymerization in Ascaris Sperm Amoeboid Motility</title><source>ScienceDirect Freedom Collection</source><creator>Grant, Richard P. ; Buttery, Shawnna M. ; Ekman, Gail C. ; Roberts, Thomas M. ; Stewart, Murray</creator><creatorcontrib>Grant, Richard P. ; Buttery, Shawnna M. ; Ekman, Gail C. ; Roberts, Thomas M. ; Stewart, Murray</creatorcontrib><description>The simplicity and specialization of the cell motility machinery of
Ascaris sperm provides a powerful system in which to probe the basic molecular mechanism of amoeboid cell motility. Although
Ascaris sperm locomotion closely resembles that seen in many other types of crawling cell, movement is generated by modulation of a cytoskeleton based on the major sperm protein (MSP) rather than the actin present in other cell types. The
Ascaris motility machinery can be studied conveniently in a cell-free
in vitro system based on the movement of plasma membrane vesicles by fibres constructed from bundles of MSP filaments. In addition to ATP, MSP and a plasma membrane protein, reconstitution of MSP motility in this cell-free extract requires cytosolic proteins to orchestrate the site-specific assembly and bundling of MSP filaments that generates locomotion. One of these proteins, MFP2, accelerates the rate of movement in this assay. Here, we describe crystal structures of two isoforms of MFP2 and show that both are constructed from two domains that have the same fold based on a novel, compact beta sheet arrangement. Patterns of conservation observed in a structure-based analysis of MFP2 sequences from different nematode species identified regions that may be putative functional interfaces involved both in interactions between MFP2 domains and also with other components of the sperm motility machinery. Analysis of the growth of fibres
in vitro in the presence of added MFP2 indicated that MFP2 increases the rate of locomotion by enhancing the effective rate of MSP filament polymerization. This observation, together with the structural data, suggests that MFP2 may function in a manner analogous to formins in actin-based motility.</description><identifier>ISSN: 0022-2836</identifier><identifier>EISSN: 1089-8638</identifier><identifier>DOI: 10.1016/j.jmb.2005.01.054</identifier><identifier>PMID: 15755452</identifier><language>eng</language><publisher>England: Elsevier Ltd</publisher><subject>Amino Acid Sequence ; amoeboid motility ; Animals ; Ascaris - cytology ; Cell Movement - physiology ; crystal structure ; Crystallography, X-Ray ; Helminth Proteins - chemistry ; Helminth Proteins - metabolism ; Male ; Models, Molecular ; Molecular Sequence Data ; polymerization ; Protein Isoforms - chemistry ; Protein Isoforms - genetics ; Protein Isoforms - metabolism ; Protein Structure, Tertiary ; Recombinant Proteins - chemistry ; Recombinant Proteins - genetics ; Recombinant Proteins - metabolism ; Sequence Alignment ; Sequence Homology, Amino Acid ; Spermatozoa - chemistry ; Spermatozoa - metabolism ; unique fold</subject><ispartof>Journal of molecular biology, 2005-04, Vol.347 (3), p.583-595</ispartof><rights>2005 Elsevier Ltd</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c417t-9b4cfa04765a45b4623f8f5a58efffdf9d90e53fffa87e691ec368ff749755b23</citedby><cites>FETCH-LOGICAL-c417t-9b4cfa04765a45b4623f8f5a58efffdf9d90e53fffa87e691ec368ff749755b23</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/15755452$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Grant, Richard P.</creatorcontrib><creatorcontrib>Buttery, Shawnna M.</creatorcontrib><creatorcontrib>Ekman, Gail C.</creatorcontrib><creatorcontrib>Roberts, Thomas M.</creatorcontrib><creatorcontrib>Stewart, Murray</creatorcontrib><title>Structure of MFP2 and its Function in Enhancing MSP Polymerization in Ascaris Sperm Amoeboid Motility</title><title>Journal of molecular biology</title><addtitle>J Mol Biol</addtitle><description>The simplicity and specialization of the cell motility machinery of
Ascaris sperm provides a powerful system in which to probe the basic molecular mechanism of amoeboid cell motility. Although
Ascaris sperm locomotion closely resembles that seen in many other types of crawling cell, movement is generated by modulation of a cytoskeleton based on the major sperm protein (MSP) rather than the actin present in other cell types. The
Ascaris motility machinery can be studied conveniently in a cell-free
in vitro system based on the movement of plasma membrane vesicles by fibres constructed from bundles of MSP filaments. In addition to ATP, MSP and a plasma membrane protein, reconstitution of MSP motility in this cell-free extract requires cytosolic proteins to orchestrate the site-specific assembly and bundling of MSP filaments that generates locomotion. One of these proteins, MFP2, accelerates the rate of movement in this assay. Here, we describe crystal structures of two isoforms of MFP2 and show that both are constructed from two domains that have the same fold based on a novel, compact beta sheet arrangement. Patterns of conservation observed in a structure-based analysis of MFP2 sequences from different nematode species identified regions that may be putative functional interfaces involved both in interactions between MFP2 domains and also with other components of the sperm motility machinery. Analysis of the growth of fibres
in vitro in the presence of added MFP2 indicated that MFP2 increases the rate of locomotion by enhancing the effective rate of MSP filament polymerization. This observation, together with the structural data, suggests that MFP2 may function in a manner analogous to formins in actin-based motility.</description><subject>Amino Acid Sequence</subject><subject>amoeboid motility</subject><subject>Animals</subject><subject>Ascaris - cytology</subject><subject>Cell Movement - physiology</subject><subject>crystal structure</subject><subject>Crystallography, X-Ray</subject><subject>Helminth Proteins - chemistry</subject><subject>Helminth Proteins - metabolism</subject><subject>Male</subject><subject>Models, Molecular</subject><subject>Molecular Sequence Data</subject><subject>polymerization</subject><subject>Protein Isoforms - chemistry</subject><subject>Protein Isoforms - genetics</subject><subject>Protein Isoforms - metabolism</subject><subject>Protein Structure, Tertiary</subject><subject>Recombinant Proteins - chemistry</subject><subject>Recombinant Proteins - genetics</subject><subject>Recombinant Proteins - metabolism</subject><subject>Sequence Alignment</subject><subject>Sequence Homology, Amino Acid</subject><subject>Spermatozoa - chemistry</subject><subject>Spermatozoa - metabolism</subject><subject>unique fold</subject><issn>0022-2836</issn><issn>1089-8638</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2005</creationdate><recordtype>article</recordtype><recordid>eNp9kMFq3DAQhkVIabZJHyCXolNudiVbsmV6WkI2LWTJwjZnIcujRIstbSW5sH36KNktvfU0A_P9P8yH0DUlJSW0-bord1NfVoTwktCScHaGFpSIrhBNLc7RgpCqKipRNxfoU4w7ksGaiY_ogvKWc8arBYJtCrNOcwDsDV6vNhVWbsA2RbyanU7WO2wdvnMvymnrnvF6u8EbPx4mCPaP-ntfRq2CjXi7hzDh5eSh93bAa5_saNPhCn0waozw-TQv0dPq7uft9-Lh8f7H7fKh0Iy2qeh6po0irG24YrxnTVUbYbjiAowxg-mGjgCv865EC01HQdeNMKZlXf6nr-pLdHPs3Qf_a4aY5GSjhnFUDvwcZfNOCppBegR18DEGMHIf7KTCQVIi39zKncxu5ZtbSajMbnPmy6l87icY_iVOMjPw7QhAfvG3hSCjtuA0DDaATnLw9j_1r7-6inI</recordid><startdate>20050401</startdate><enddate>20050401</enddate><creator>Grant, Richard P.</creator><creator>Buttery, Shawnna M.</creator><creator>Ekman, Gail C.</creator><creator>Roberts, Thomas M.</creator><creator>Stewart, Murray</creator><general>Elsevier Ltd</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope></search><sort><creationdate>20050401</creationdate><title>Structure of MFP2 and its Function in Enhancing MSP Polymerization in Ascaris Sperm Amoeboid Motility</title><author>Grant, Richard P. ; Buttery, Shawnna M. ; Ekman, Gail C. ; Roberts, Thomas M. ; Stewart, Murray</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c417t-9b4cfa04765a45b4623f8f5a58efffdf9d90e53fffa87e691ec368ff749755b23</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2005</creationdate><topic>Amino Acid Sequence</topic><topic>amoeboid motility</topic><topic>Animals</topic><topic>Ascaris - cytology</topic><topic>Cell Movement - physiology</topic><topic>crystal structure</topic><topic>Crystallography, X-Ray</topic><topic>Helminth Proteins - chemistry</topic><topic>Helminth Proteins - metabolism</topic><topic>Male</topic><topic>Models, Molecular</topic><topic>Molecular Sequence Data</topic><topic>polymerization</topic><topic>Protein Isoforms - chemistry</topic><topic>Protein Isoforms - genetics</topic><topic>Protein Isoforms - metabolism</topic><topic>Protein Structure, Tertiary</topic><topic>Recombinant Proteins - chemistry</topic><topic>Recombinant Proteins - genetics</topic><topic>Recombinant Proteins - metabolism</topic><topic>Sequence Alignment</topic><topic>Sequence Homology, Amino Acid</topic><topic>Spermatozoa - chemistry</topic><topic>Spermatozoa - metabolism</topic><topic>unique fold</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Grant, Richard P.</creatorcontrib><creatorcontrib>Buttery, Shawnna M.</creatorcontrib><creatorcontrib>Ekman, Gail C.</creatorcontrib><creatorcontrib>Roberts, Thomas M.</creatorcontrib><creatorcontrib>Stewart, Murray</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Journal of molecular biology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Grant, Richard P.</au><au>Buttery, Shawnna M.</au><au>Ekman, Gail C.</au><au>Roberts, Thomas M.</au><au>Stewart, Murray</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Structure of MFP2 and its Function in Enhancing MSP Polymerization in Ascaris Sperm Amoeboid Motility</atitle><jtitle>Journal of molecular biology</jtitle><addtitle>J Mol Biol</addtitle><date>2005-04-01</date><risdate>2005</risdate><volume>347</volume><issue>3</issue><spage>583</spage><epage>595</epage><pages>583-595</pages><issn>0022-2836</issn><eissn>1089-8638</eissn><abstract>The simplicity and specialization of the cell motility machinery of
Ascaris sperm provides a powerful system in which to probe the basic molecular mechanism of amoeboid cell motility. Although
Ascaris sperm locomotion closely resembles that seen in many other types of crawling cell, movement is generated by modulation of a cytoskeleton based on the major sperm protein (MSP) rather than the actin present in other cell types. The
Ascaris motility machinery can be studied conveniently in a cell-free
in vitro system based on the movement of plasma membrane vesicles by fibres constructed from bundles of MSP filaments. In addition to ATP, MSP and a plasma membrane protein, reconstitution of MSP motility in this cell-free extract requires cytosolic proteins to orchestrate the site-specific assembly and bundling of MSP filaments that generates locomotion. One of these proteins, MFP2, accelerates the rate of movement in this assay. Here, we describe crystal structures of two isoforms of MFP2 and show that both are constructed from two domains that have the same fold based on a novel, compact beta sheet arrangement. Patterns of conservation observed in a structure-based analysis of MFP2 sequences from different nematode species identified regions that may be putative functional interfaces involved both in interactions between MFP2 domains and also with other components of the sperm motility machinery. Analysis of the growth of fibres
in vitro in the presence of added MFP2 indicated that MFP2 increases the rate of locomotion by enhancing the effective rate of MSP filament polymerization. This observation, together with the structural data, suggests that MFP2 may function in a manner analogous to formins in actin-based motility.</abstract><cop>England</cop><pub>Elsevier Ltd</pub><pmid>15755452</pmid><doi>10.1016/j.jmb.2005.01.054</doi><tpages>13</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0022-2836 |
ispartof | Journal of molecular biology, 2005-04, Vol.347 (3), p.583-595 |
issn | 0022-2836 1089-8638 |
language | eng |
recordid | cdi_proquest_miscellaneous_67497581 |
source | ScienceDirect Freedom Collection |
subjects | Amino Acid Sequence amoeboid motility Animals Ascaris - cytology Cell Movement - physiology crystal structure Crystallography, X-Ray Helminth Proteins - chemistry Helminth Proteins - metabolism Male Models, Molecular Molecular Sequence Data polymerization Protein Isoforms - chemistry Protein Isoforms - genetics Protein Isoforms - metabolism Protein Structure, Tertiary Recombinant Proteins - chemistry Recombinant Proteins - genetics Recombinant Proteins - metabolism Sequence Alignment Sequence Homology, Amino Acid Spermatozoa - chemistry Spermatozoa - metabolism unique fold |
title | Structure of MFP2 and its Function in Enhancing MSP Polymerization in Ascaris Sperm Amoeboid Motility |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-04T23%3A53%3A35IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Structure%20of%20MFP2%20and%20its%20Function%20in%20Enhancing%20MSP%20Polymerization%20in%20Ascaris%20Sperm%20Amoeboid%20Motility&rft.jtitle=Journal%20of%20molecular%20biology&rft.au=Grant,%20Richard%20P.&rft.date=2005-04-01&rft.volume=347&rft.issue=3&rft.spage=583&rft.epage=595&rft.pages=583-595&rft.issn=0022-2836&rft.eissn=1089-8638&rft_id=info:doi/10.1016/j.jmb.2005.01.054&rft_dat=%3Cproquest_cross%3E67497581%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c417t-9b4cfa04765a45b4623f8f5a58efffdf9d90e53fffa87e691ec368ff749755b23%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=67497581&rft_id=info:pmid/15755452&rfr_iscdi=true |