Loading…

Dynamic Aspects of Mercury Porosimetry:  A Lattice Model Study

Grand canonical Monte Carlo simulations using both Glauber dynamics and Kawasaki dynamics have been carried out for a recently developed lattice model of a nonwetting fluid confined in a porous material. The calculations are aimed at investigating the molecular scale mechanisms leading to mercury re...

Full description

Saved in:
Bibliographic Details
Published in:Langmuir 2005-03, Vol.21 (7), p.3179-3186
Main Authors: Porcheron, F, Monson, P. A
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Grand canonical Monte Carlo simulations using both Glauber dynamics and Kawasaki dynamics have been carried out for a recently developed lattice model of a nonwetting fluid confined in a porous material. The calculations are aimed at investigating the molecular scale mechanisms leading to mercury retention encountered during mercury porosimetry experiments. We first describe a set of simulations on slit and ink-bottle pores. We have studied the influence of the pore width parameter on the intrusion/extrusion curve shapes and investigated the corresponding mechanisms. Entrapment appears during Kawasaki dynamics simulations of extrusion performed on ink-bottle pores when the system is studied for short relaxation times. We then consider the more realistic and complex case of a Vycor glass building on recent work on the dynamics of adsorption of wetting fluids (Woo, H. J.; Monson, P. A. Phys. Rev. E 2003, 67, 041207). Our results suggest that mercury entrapment is caused by a decrease in the rate of mass transfer associated with the fragmentation of the liquid during extrusion.
ISSN:0743-7463
1520-5827
DOI:10.1021/la047596e