Loading…

Analysis of the fibroblastic growth factor receptor-RAS RAF MEK ERK-ETS2 brachyury signalling pathway in chordomas

Chordomas are rare primary malignant bone tumours that derive from notochord precursor cells and express brachyury, a molecule involved in notochord development. Little is known about the genetic events responsible for driving the growth of this tumour, but it is well established that brachyury is r...

Full description

Saved in:
Bibliographic Details
Published in:Modern pathology 2009-08, Vol.22 (8), p.996-1005
Main Authors: Shalaby, Asem AE, Presneau, Nadege, Idowu, Bernadine D, Thompson, Lisa, Briggs, Timothy RW, Tirabosco, Roberto, Diss, Timothy C, Flanagan, Adrienne M
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c473t-a8f4ab31ab58b615cab7107127135ee8b0f49aea6a92c29caa54bac22993d9503
cites cdi_FETCH-LOGICAL-c473t-a8f4ab31ab58b615cab7107127135ee8b0f49aea6a92c29caa54bac22993d9503
container_end_page 1005
container_issue 8
container_start_page 996
container_title Modern pathology
container_volume 22
creator Shalaby, Asem AE
Presneau, Nadege
Idowu, Bernadine D
Thompson, Lisa
Briggs, Timothy RW
Tirabosco, Roberto
Diss, Timothy C
Flanagan, Adrienne M
description Chordomas are rare primary malignant bone tumours that derive from notochord precursor cells and express brachyury, a molecule involved in notochord development. Little is known about the genetic events responsible for driving the growth of this tumour, but it is well established that brachyury is regulated through fibroblastic growth factor receptors (FGFRs) through RAS/RAF/MEK/ERK and ETS2 in ascidian, Xenopus and zebrafish, although little is known about its regulation in mammals. The aim of this study was to attempt to identify the molecular genetic events that are responsible for the pathogenesis of chordomas with particular focus on the FGFR signalling pathway on the basis of the evidence in the ascidian and Xenopus models that the expression of brachyury requires the activation of this pathway. Immunohistochemistry showed that 47 of 50 chordomas (94%) expressed at least one of the FGFRs, and western blotting showed phosphorylation of fibroblast growth factor receptor substrate 2 alpha (FRS2 α ), an adaptor signalling protein, that links FGFR to the RAS/RAF/MEK/ERK pathway. Screening for mutations in brachyury (all coding exons and promoter), FGFRs 1–4 (previously reported mutations), KRAS (codons 12, 13, 51, 61) and BRAF (exons 11 and 15) failed to show any genetic alterations in 23 chordomas. Fluorescent in situ hybridisation analysis on FGFR4 , ETS2 and brachyury failed to show either amplification of these genes, although there was minor allelic gain in brachyury in three tumours, or translocation for ERG and ETS2 loci. The key genetic events responsible for the initiation and progression of chordomas remain to be discovered.
doi_str_mv 10.1038/modpathol.2009.63
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_67542504</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>21177392</sourcerecordid><originalsourceid>FETCH-LOGICAL-c473t-a8f4ab31ab58b615cab7107127135ee8b0f49aea6a92c29caa54bac22993d9503</originalsourceid><addsrcrecordid>eNqFkV1r2zAUhsXYWNJsP2A3RQzWO6f6sGzrMoS0HekoJNm1OVLk2MG2Usmm-N9PJiGFXWwgkEDP-xyJF6FvlMwp4dl9Y_cn6Epbzxkhcp7wD2hKBScRYZn4iKYkkzziUrAJuvH-SAiNRcY-owmVMUkzIabILVqoB195bAvclQYXlXJW1eC7SuODs29diQvQnXXYGW1O4RBtFlu8WTzgX6s1Xm3W0Wq3ZVg50OXQuwH76hCkddUe8Pi8Nxhw1WJdWre3Dfgv6FMBtTdfL_sM_X5Y7ZZP0fPL48_l4jnSccq7CLIiBsUpKJGphAoNKqUkpSylXBiTKVLEEgwkIJlmUgOIWIFmTEq-l4LwGbo7e0_OvvbGd3lTeW3qGlpje58nqYiZIPF_QUZpmnLJAvj9L_Boexf-GhhGw6KSB4ieIe2s984U-clVDbghpyQfa8uvteVjbXkyZm4v4l41Zv-euPQUAHYGfLhqD8a9T_6X9cc51ELXO3O1XskRDNwfBGGz-g</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>221221193</pqid></control><display><type>article</type><title>Analysis of the fibroblastic growth factor receptor-RAS RAF MEK ERK-ETS2 brachyury signalling pathway in chordomas</title><source>Nature</source><creator>Shalaby, Asem AE ; Presneau, Nadege ; Idowu, Bernadine D ; Thompson, Lisa ; Briggs, Timothy RW ; Tirabosco, Roberto ; Diss, Timothy C ; Flanagan, Adrienne M</creator><creatorcontrib>Shalaby, Asem AE ; Presneau, Nadege ; Idowu, Bernadine D ; Thompson, Lisa ; Briggs, Timothy RW ; Tirabosco, Roberto ; Diss, Timothy C ; Flanagan, Adrienne M</creatorcontrib><description>Chordomas are rare primary malignant bone tumours that derive from notochord precursor cells and express brachyury, a molecule involved in notochord development. Little is known about the genetic events responsible for driving the growth of this tumour, but it is well established that brachyury is regulated through fibroblastic growth factor receptors (FGFRs) through RAS/RAF/MEK/ERK and ETS2 in ascidian, Xenopus and zebrafish, although little is known about its regulation in mammals. The aim of this study was to attempt to identify the molecular genetic events that are responsible for the pathogenesis of chordomas with particular focus on the FGFR signalling pathway on the basis of the evidence in the ascidian and Xenopus models that the expression of brachyury requires the activation of this pathway. Immunohistochemistry showed that 47 of 50 chordomas (94%) expressed at least one of the FGFRs, and western blotting showed phosphorylation of fibroblast growth factor receptor substrate 2 alpha (FRS2 α ), an adaptor signalling protein, that links FGFR to the RAS/RAF/MEK/ERK pathway. Screening for mutations in brachyury (all coding exons and promoter), FGFRs 1–4 (previously reported mutations), KRAS (codons 12, 13, 51, 61) and BRAF (exons 11 and 15) failed to show any genetic alterations in 23 chordomas. Fluorescent in situ hybridisation analysis on FGFR4 , ETS2 and brachyury failed to show either amplification of these genes, although there was minor allelic gain in brachyury in three tumours, or translocation for ERG and ETS2 loci. The key genetic events responsible for the initiation and progression of chordomas remain to be discovered.</description><identifier>ISSN: 0893-3952</identifier><identifier>EISSN: 1530-0285</identifier><identifier>DOI: 10.1038/modpathol.2009.63</identifier><identifier>PMID: 19407855</identifier><identifier>CODEN: MODPEO</identifier><language>eng</language><publisher>New York: Nature Publishing Group US</publisher><subject>Adult ; Aged ; Aged, 80 and over ; Blotting, Western ; Chordoma - genetics ; Chordoma - metabolism ; Chromatography, High Pressure Liquid ; Cloning ; Cytokeratin ; Danio rerio ; DNA Mutational Analysis ; Extracellular Signal-Regulated MAP Kinases - genetics ; Extracellular Signal-Regulated MAP Kinases - metabolism ; Female ; Fetal Proteins - genetics ; Fetal Proteins - metabolism ; Fibroblasts ; Gene Expression ; Gene Expression Profiling ; Growth factors ; Histopathology ; Humans ; Immunohistochemistry ; In Situ Hybridization, Fluorescence ; Kinases ; Laboratory Medicine ; Male ; MAP Kinase Kinase Kinases - genetics ; MAP Kinase Kinase Kinases - metabolism ; Medicine ; Medicine &amp; Public Health ; Middle Aged ; Mutation ; original-article ; Orthopedics ; Pathology ; Phosphorylation ; Proto-Oncogene Protein c-ets-2 - genetics ; Proto-Oncogene Protein c-ets-2 - metabolism ; raf Kinases - genetics ; raf Kinases - metabolism ; ras Proteins - genetics ; ras Proteins - metabolism ; Receptors, Fibroblast Growth Factor - genetics ; Receptors, Fibroblast Growth Factor - metabolism ; Signal Transduction - physiology ; Spinal Neoplasms - genetics ; Spinal Neoplasms - metabolism ; T-Box Domain Proteins - genetics ; T-Box Domain Proteins - metabolism ; Tissue Array Analysis ; Tumors ; Xenopus ; Young Adult</subject><ispartof>Modern pathology, 2009-08, Vol.22 (8), p.996-1005</ispartof><rights>United States and Canadian Academy of Pathology, Inc. 2009</rights><rights>Copyright Nature Publishing Group Aug 2009</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c473t-a8f4ab31ab58b615cab7107127135ee8b0f49aea6a92c29caa54bac22993d9503</citedby><cites>FETCH-LOGICAL-c473t-a8f4ab31ab58b615cab7107127135ee8b0f49aea6a92c29caa54bac22993d9503</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,2727,27924,27925</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/19407855$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Shalaby, Asem AE</creatorcontrib><creatorcontrib>Presneau, Nadege</creatorcontrib><creatorcontrib>Idowu, Bernadine D</creatorcontrib><creatorcontrib>Thompson, Lisa</creatorcontrib><creatorcontrib>Briggs, Timothy RW</creatorcontrib><creatorcontrib>Tirabosco, Roberto</creatorcontrib><creatorcontrib>Diss, Timothy C</creatorcontrib><creatorcontrib>Flanagan, Adrienne M</creatorcontrib><title>Analysis of the fibroblastic growth factor receptor-RAS RAF MEK ERK-ETS2 brachyury signalling pathway in chordomas</title><title>Modern pathology</title><addtitle>Mod Pathol</addtitle><addtitle>Mod Pathol</addtitle><description>Chordomas are rare primary malignant bone tumours that derive from notochord precursor cells and express brachyury, a molecule involved in notochord development. Little is known about the genetic events responsible for driving the growth of this tumour, but it is well established that brachyury is regulated through fibroblastic growth factor receptors (FGFRs) through RAS/RAF/MEK/ERK and ETS2 in ascidian, Xenopus and zebrafish, although little is known about its regulation in mammals. The aim of this study was to attempt to identify the molecular genetic events that are responsible for the pathogenesis of chordomas with particular focus on the FGFR signalling pathway on the basis of the evidence in the ascidian and Xenopus models that the expression of brachyury requires the activation of this pathway. Immunohistochemistry showed that 47 of 50 chordomas (94%) expressed at least one of the FGFRs, and western blotting showed phosphorylation of fibroblast growth factor receptor substrate 2 alpha (FRS2 α ), an adaptor signalling protein, that links FGFR to the RAS/RAF/MEK/ERK pathway. Screening for mutations in brachyury (all coding exons and promoter), FGFRs 1–4 (previously reported mutations), KRAS (codons 12, 13, 51, 61) and BRAF (exons 11 and 15) failed to show any genetic alterations in 23 chordomas. Fluorescent in situ hybridisation analysis on FGFR4 , ETS2 and brachyury failed to show either amplification of these genes, although there was minor allelic gain in brachyury in three tumours, or translocation for ERG and ETS2 loci. The key genetic events responsible for the initiation and progression of chordomas remain to be discovered.</description><subject>Adult</subject><subject>Aged</subject><subject>Aged, 80 and over</subject><subject>Blotting, Western</subject><subject>Chordoma - genetics</subject><subject>Chordoma - metabolism</subject><subject>Chromatography, High Pressure Liquid</subject><subject>Cloning</subject><subject>Cytokeratin</subject><subject>Danio rerio</subject><subject>DNA Mutational Analysis</subject><subject>Extracellular Signal-Regulated MAP Kinases - genetics</subject><subject>Extracellular Signal-Regulated MAP Kinases - metabolism</subject><subject>Female</subject><subject>Fetal Proteins - genetics</subject><subject>Fetal Proteins - metabolism</subject><subject>Fibroblasts</subject><subject>Gene Expression</subject><subject>Gene Expression Profiling</subject><subject>Growth factors</subject><subject>Histopathology</subject><subject>Humans</subject><subject>Immunohistochemistry</subject><subject>In Situ Hybridization, Fluorescence</subject><subject>Kinases</subject><subject>Laboratory Medicine</subject><subject>Male</subject><subject>MAP Kinase Kinase Kinases - genetics</subject><subject>MAP Kinase Kinase Kinases - metabolism</subject><subject>Medicine</subject><subject>Medicine &amp; Public Health</subject><subject>Middle Aged</subject><subject>Mutation</subject><subject>original-article</subject><subject>Orthopedics</subject><subject>Pathology</subject><subject>Phosphorylation</subject><subject>Proto-Oncogene Protein c-ets-2 - genetics</subject><subject>Proto-Oncogene Protein c-ets-2 - metabolism</subject><subject>raf Kinases - genetics</subject><subject>raf Kinases - metabolism</subject><subject>ras Proteins - genetics</subject><subject>ras Proteins - metabolism</subject><subject>Receptors, Fibroblast Growth Factor - genetics</subject><subject>Receptors, Fibroblast Growth Factor - metabolism</subject><subject>Signal Transduction - physiology</subject><subject>Spinal Neoplasms - genetics</subject><subject>Spinal Neoplasms - metabolism</subject><subject>T-Box Domain Proteins - genetics</subject><subject>T-Box Domain Proteins - metabolism</subject><subject>Tissue Array Analysis</subject><subject>Tumors</subject><subject>Xenopus</subject><subject>Young Adult</subject><issn>0893-3952</issn><issn>1530-0285</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2009</creationdate><recordtype>article</recordtype><recordid>eNqFkV1r2zAUhsXYWNJsP2A3RQzWO6f6sGzrMoS0HekoJNm1OVLk2MG2Usmm-N9PJiGFXWwgkEDP-xyJF6FvlMwp4dl9Y_cn6Epbzxkhcp7wD2hKBScRYZn4iKYkkzziUrAJuvH-SAiNRcY-owmVMUkzIabILVqoB195bAvclQYXlXJW1eC7SuODs29diQvQnXXYGW1O4RBtFlu8WTzgX6s1Xm3W0Wq3ZVg50OXQuwH76hCkddUe8Pi8Nxhw1WJdWre3Dfgv6FMBtTdfL_sM_X5Y7ZZP0fPL48_l4jnSccq7CLIiBsUpKJGphAoNKqUkpSylXBiTKVLEEgwkIJlmUgOIWIFmTEq-l4LwGbo7e0_OvvbGd3lTeW3qGlpje58nqYiZIPF_QUZpmnLJAvj9L_Boexf-GhhGw6KSB4ieIe2s984U-clVDbghpyQfa8uvteVjbXkyZm4v4l41Zv-euPQUAHYGfLhqD8a9T_6X9cc51ELXO3O1XskRDNwfBGGz-g</recordid><startdate>20090801</startdate><enddate>20090801</enddate><creator>Shalaby, Asem AE</creator><creator>Presneau, Nadege</creator><creator>Idowu, Bernadine D</creator><creator>Thompson, Lisa</creator><creator>Briggs, Timothy RW</creator><creator>Tirabosco, Roberto</creator><creator>Diss, Timothy C</creator><creator>Flanagan, Adrienne M</creator><general>Nature Publishing Group US</general><general>Elsevier Limited</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QP</scope><scope>7RV</scope><scope>7TK</scope><scope>7X7</scope><scope>7XB</scope><scope>88A</scope><scope>88E</scope><scope>8AO</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>KB0</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M7P</scope><scope>NAPCQ</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>7TO</scope><scope>H94</scope><scope>7X8</scope></search><sort><creationdate>20090801</creationdate><title>Analysis of the fibroblastic growth factor receptor-RAS RAF MEK ERK-ETS2 brachyury signalling pathway in chordomas</title><author>Shalaby, Asem AE ; Presneau, Nadege ; Idowu, Bernadine D ; Thompson, Lisa ; Briggs, Timothy RW ; Tirabosco, Roberto ; Diss, Timothy C ; Flanagan, Adrienne M</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c473t-a8f4ab31ab58b615cab7107127135ee8b0f49aea6a92c29caa54bac22993d9503</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2009</creationdate><topic>Adult</topic><topic>Aged</topic><topic>Aged, 80 and over</topic><topic>Blotting, Western</topic><topic>Chordoma - genetics</topic><topic>Chordoma - metabolism</topic><topic>Chromatography, High Pressure Liquid</topic><topic>Cloning</topic><topic>Cytokeratin</topic><topic>Danio rerio</topic><topic>DNA Mutational Analysis</topic><topic>Extracellular Signal-Regulated MAP Kinases - genetics</topic><topic>Extracellular Signal-Regulated MAP Kinases - metabolism</topic><topic>Female</topic><topic>Fetal Proteins - genetics</topic><topic>Fetal Proteins - metabolism</topic><topic>Fibroblasts</topic><topic>Gene Expression</topic><topic>Gene Expression Profiling</topic><topic>Growth factors</topic><topic>Histopathology</topic><topic>Humans</topic><topic>Immunohistochemistry</topic><topic>In Situ Hybridization, Fluorescence</topic><topic>Kinases</topic><topic>Laboratory Medicine</topic><topic>Male</topic><topic>MAP Kinase Kinase Kinases - genetics</topic><topic>MAP Kinase Kinase Kinases - metabolism</topic><topic>Medicine</topic><topic>Medicine &amp; Public Health</topic><topic>Middle Aged</topic><topic>Mutation</topic><topic>original-article</topic><topic>Orthopedics</topic><topic>Pathology</topic><topic>Phosphorylation</topic><topic>Proto-Oncogene Protein c-ets-2 - genetics</topic><topic>Proto-Oncogene Protein c-ets-2 - metabolism</topic><topic>raf Kinases - genetics</topic><topic>raf Kinases - metabolism</topic><topic>ras Proteins - genetics</topic><topic>ras Proteins - metabolism</topic><topic>Receptors, Fibroblast Growth Factor - genetics</topic><topic>Receptors, Fibroblast Growth Factor - metabolism</topic><topic>Signal Transduction - physiology</topic><topic>Spinal Neoplasms - genetics</topic><topic>Spinal Neoplasms - metabolism</topic><topic>T-Box Domain Proteins - genetics</topic><topic>T-Box Domain Proteins - metabolism</topic><topic>Tissue Array Analysis</topic><topic>Tumors</topic><topic>Xenopus</topic><topic>Young Adult</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Shalaby, Asem AE</creatorcontrib><creatorcontrib>Presneau, Nadege</creatorcontrib><creatorcontrib>Idowu, Bernadine D</creatorcontrib><creatorcontrib>Thompson, Lisa</creatorcontrib><creatorcontrib>Briggs, Timothy RW</creatorcontrib><creatorcontrib>Tirabosco, Roberto</creatorcontrib><creatorcontrib>Diss, Timothy C</creatorcontrib><creatorcontrib>Flanagan, Adrienne M</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>ProQuest Nursing &amp; Allied Health Database</collection><collection>Neurosciences Abstracts</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Nursing &amp; Allied Health Database (Alumni Edition)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>PML(ProQuest Medical Library)</collection><collection>Biological Science Database</collection><collection>Nursing &amp; Allied Health Premium</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>Modern pathology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Shalaby, Asem AE</au><au>Presneau, Nadege</au><au>Idowu, Bernadine D</au><au>Thompson, Lisa</au><au>Briggs, Timothy RW</au><au>Tirabosco, Roberto</au><au>Diss, Timothy C</au><au>Flanagan, Adrienne M</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Analysis of the fibroblastic growth factor receptor-RAS RAF MEK ERK-ETS2 brachyury signalling pathway in chordomas</atitle><jtitle>Modern pathology</jtitle><stitle>Mod Pathol</stitle><addtitle>Mod Pathol</addtitle><date>2009-08-01</date><risdate>2009</risdate><volume>22</volume><issue>8</issue><spage>996</spage><epage>1005</epage><pages>996-1005</pages><issn>0893-3952</issn><eissn>1530-0285</eissn><coden>MODPEO</coden><abstract>Chordomas are rare primary malignant bone tumours that derive from notochord precursor cells and express brachyury, a molecule involved in notochord development. Little is known about the genetic events responsible for driving the growth of this tumour, but it is well established that brachyury is regulated through fibroblastic growth factor receptors (FGFRs) through RAS/RAF/MEK/ERK and ETS2 in ascidian, Xenopus and zebrafish, although little is known about its regulation in mammals. The aim of this study was to attempt to identify the molecular genetic events that are responsible for the pathogenesis of chordomas with particular focus on the FGFR signalling pathway on the basis of the evidence in the ascidian and Xenopus models that the expression of brachyury requires the activation of this pathway. Immunohistochemistry showed that 47 of 50 chordomas (94%) expressed at least one of the FGFRs, and western blotting showed phosphorylation of fibroblast growth factor receptor substrate 2 alpha (FRS2 α ), an adaptor signalling protein, that links FGFR to the RAS/RAF/MEK/ERK pathway. Screening for mutations in brachyury (all coding exons and promoter), FGFRs 1–4 (previously reported mutations), KRAS (codons 12, 13, 51, 61) and BRAF (exons 11 and 15) failed to show any genetic alterations in 23 chordomas. Fluorescent in situ hybridisation analysis on FGFR4 , ETS2 and brachyury failed to show either amplification of these genes, although there was minor allelic gain in brachyury in three tumours, or translocation for ERG and ETS2 loci. The key genetic events responsible for the initiation and progression of chordomas remain to be discovered.</abstract><cop>New York</cop><pub>Nature Publishing Group US</pub><pmid>19407855</pmid><doi>10.1038/modpathol.2009.63</doi><tpages>10</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0893-3952
ispartof Modern pathology, 2009-08, Vol.22 (8), p.996-1005
issn 0893-3952
1530-0285
language eng
recordid cdi_proquest_miscellaneous_67542504
source Nature
subjects Adult
Aged
Aged, 80 and over
Blotting, Western
Chordoma - genetics
Chordoma - metabolism
Chromatography, High Pressure Liquid
Cloning
Cytokeratin
Danio rerio
DNA Mutational Analysis
Extracellular Signal-Regulated MAP Kinases - genetics
Extracellular Signal-Regulated MAP Kinases - metabolism
Female
Fetal Proteins - genetics
Fetal Proteins - metabolism
Fibroblasts
Gene Expression
Gene Expression Profiling
Growth factors
Histopathology
Humans
Immunohistochemistry
In Situ Hybridization, Fluorescence
Kinases
Laboratory Medicine
Male
MAP Kinase Kinase Kinases - genetics
MAP Kinase Kinase Kinases - metabolism
Medicine
Medicine & Public Health
Middle Aged
Mutation
original-article
Orthopedics
Pathology
Phosphorylation
Proto-Oncogene Protein c-ets-2 - genetics
Proto-Oncogene Protein c-ets-2 - metabolism
raf Kinases - genetics
raf Kinases - metabolism
ras Proteins - genetics
ras Proteins - metabolism
Receptors, Fibroblast Growth Factor - genetics
Receptors, Fibroblast Growth Factor - metabolism
Signal Transduction - physiology
Spinal Neoplasms - genetics
Spinal Neoplasms - metabolism
T-Box Domain Proteins - genetics
T-Box Domain Proteins - metabolism
Tissue Array Analysis
Tumors
Xenopus
Young Adult
title Analysis of the fibroblastic growth factor receptor-RAS RAF MEK ERK-ETS2 brachyury signalling pathway in chordomas
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-26T17%3A40%3A37IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Analysis%20of%20the%20fibroblastic%20growth%20factor%20receptor-RAS%20RAF%20MEK%20ERK-ETS2%20brachyury%20signalling%20pathway%20in%20chordomas&rft.jtitle=Modern%20pathology&rft.au=Shalaby,%20Asem%20AE&rft.date=2009-08-01&rft.volume=22&rft.issue=8&rft.spage=996&rft.epage=1005&rft.pages=996-1005&rft.issn=0893-3952&rft.eissn=1530-0285&rft.coden=MODPEO&rft_id=info:doi/10.1038/modpathol.2009.63&rft_dat=%3Cproquest_cross%3E21177392%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c473t-a8f4ab31ab58b615cab7107127135ee8b0f49aea6a92c29caa54bac22993d9503%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=221221193&rft_id=info:pmid/19407855&rfr_iscdi=true