Loading…
Analysis of the fibroblastic growth factor receptor-RAS RAF MEK ERK-ETS2 brachyury signalling pathway in chordomas
Chordomas are rare primary malignant bone tumours that derive from notochord precursor cells and express brachyury, a molecule involved in notochord development. Little is known about the genetic events responsible for driving the growth of this tumour, but it is well established that brachyury is r...
Saved in:
Published in: | Modern pathology 2009-08, Vol.22 (8), p.996-1005 |
---|---|
Main Authors: | , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c473t-a8f4ab31ab58b615cab7107127135ee8b0f49aea6a92c29caa54bac22993d9503 |
---|---|
cites | cdi_FETCH-LOGICAL-c473t-a8f4ab31ab58b615cab7107127135ee8b0f49aea6a92c29caa54bac22993d9503 |
container_end_page | 1005 |
container_issue | 8 |
container_start_page | 996 |
container_title | Modern pathology |
container_volume | 22 |
creator | Shalaby, Asem AE Presneau, Nadege Idowu, Bernadine D Thompson, Lisa Briggs, Timothy RW Tirabosco, Roberto Diss, Timothy C Flanagan, Adrienne M |
description | Chordomas are rare primary malignant bone tumours that derive from notochord precursor cells and express brachyury, a molecule involved in notochord development. Little is known about the genetic events responsible for driving the growth of this tumour, but it is well established that brachyury is regulated through fibroblastic growth factor receptors (FGFRs) through RAS/RAF/MEK/ERK and ETS2 in ascidian, Xenopus and zebrafish, although little is known about its regulation in mammals. The aim of this study was to attempt to identify the molecular genetic events that are responsible for the pathogenesis of chordomas with particular focus on the FGFR signalling pathway on the basis of the evidence in the ascidian and Xenopus models that the expression of brachyury requires the activation of this pathway. Immunohistochemistry showed that 47 of 50 chordomas (94%) expressed at least one of the FGFRs, and western blotting showed phosphorylation of fibroblast growth factor receptor substrate 2 alpha (FRS2
α
), an adaptor signalling protein, that links FGFR to the RAS/RAF/MEK/ERK pathway. Screening for mutations in
brachyury
(all coding exons and promoter),
FGFRs 1–4
(previously reported mutations),
KRAS
(codons 12, 13, 51, 61) and
BRAF
(exons 11 and 15) failed to show any genetic alterations in 23 chordomas. Fluorescent
in situ
hybridisation analysis on
FGFR4
,
ETS2
and
brachyury
failed to show either amplification of these genes, although there was minor allelic gain in brachyury in three tumours, or translocation for
ERG
and
ETS2
loci. The key genetic events responsible for the initiation and progression of chordomas remain to be discovered. |
doi_str_mv | 10.1038/modpathol.2009.63 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_67542504</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>21177392</sourcerecordid><originalsourceid>FETCH-LOGICAL-c473t-a8f4ab31ab58b615cab7107127135ee8b0f49aea6a92c29caa54bac22993d9503</originalsourceid><addsrcrecordid>eNqFkV1r2zAUhsXYWNJsP2A3RQzWO6f6sGzrMoS0HekoJNm1OVLk2MG2Usmm-N9PJiGFXWwgkEDP-xyJF6FvlMwp4dl9Y_cn6Epbzxkhcp7wD2hKBScRYZn4iKYkkzziUrAJuvH-SAiNRcY-owmVMUkzIabILVqoB195bAvclQYXlXJW1eC7SuODs29diQvQnXXYGW1O4RBtFlu8WTzgX6s1Xm3W0Wq3ZVg50OXQuwH76hCkddUe8Pi8Nxhw1WJdWre3Dfgv6FMBtTdfL_sM_X5Y7ZZP0fPL48_l4jnSccq7CLIiBsUpKJGphAoNKqUkpSylXBiTKVLEEgwkIJlmUgOIWIFmTEq-l4LwGbo7e0_OvvbGd3lTeW3qGlpje58nqYiZIPF_QUZpmnLJAvj9L_Boexf-GhhGw6KSB4ieIe2s984U-clVDbghpyQfa8uvteVjbXkyZm4v4l41Zv-euPQUAHYGfLhqD8a9T_6X9cc51ELXO3O1XskRDNwfBGGz-g</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>221221193</pqid></control><display><type>article</type><title>Analysis of the fibroblastic growth factor receptor-RAS RAF MEK ERK-ETS2 brachyury signalling pathway in chordomas</title><source>Nature</source><creator>Shalaby, Asem AE ; Presneau, Nadege ; Idowu, Bernadine D ; Thompson, Lisa ; Briggs, Timothy RW ; Tirabosco, Roberto ; Diss, Timothy C ; Flanagan, Adrienne M</creator><creatorcontrib>Shalaby, Asem AE ; Presneau, Nadege ; Idowu, Bernadine D ; Thompson, Lisa ; Briggs, Timothy RW ; Tirabosco, Roberto ; Diss, Timothy C ; Flanagan, Adrienne M</creatorcontrib><description>Chordomas are rare primary malignant bone tumours that derive from notochord precursor cells and express brachyury, a molecule involved in notochord development. Little is known about the genetic events responsible for driving the growth of this tumour, but it is well established that brachyury is regulated through fibroblastic growth factor receptors (FGFRs) through RAS/RAF/MEK/ERK and ETS2 in ascidian, Xenopus and zebrafish, although little is known about its regulation in mammals. The aim of this study was to attempt to identify the molecular genetic events that are responsible for the pathogenesis of chordomas with particular focus on the FGFR signalling pathway on the basis of the evidence in the ascidian and Xenopus models that the expression of brachyury requires the activation of this pathway. Immunohistochemistry showed that 47 of 50 chordomas (94%) expressed at least one of the FGFRs, and western blotting showed phosphorylation of fibroblast growth factor receptor substrate 2 alpha (FRS2
α
), an adaptor signalling protein, that links FGFR to the RAS/RAF/MEK/ERK pathway. Screening for mutations in
brachyury
(all coding exons and promoter),
FGFRs 1–4
(previously reported mutations),
KRAS
(codons 12, 13, 51, 61) and
BRAF
(exons 11 and 15) failed to show any genetic alterations in 23 chordomas. Fluorescent
in situ
hybridisation analysis on
FGFR4
,
ETS2
and
brachyury
failed to show either amplification of these genes, although there was minor allelic gain in brachyury in three tumours, or translocation for
ERG
and
ETS2
loci. The key genetic events responsible for the initiation and progression of chordomas remain to be discovered.</description><identifier>ISSN: 0893-3952</identifier><identifier>EISSN: 1530-0285</identifier><identifier>DOI: 10.1038/modpathol.2009.63</identifier><identifier>PMID: 19407855</identifier><identifier>CODEN: MODPEO</identifier><language>eng</language><publisher>New York: Nature Publishing Group US</publisher><subject>Adult ; Aged ; Aged, 80 and over ; Blotting, Western ; Chordoma - genetics ; Chordoma - metabolism ; Chromatography, High Pressure Liquid ; Cloning ; Cytokeratin ; Danio rerio ; DNA Mutational Analysis ; Extracellular Signal-Regulated MAP Kinases - genetics ; Extracellular Signal-Regulated MAP Kinases - metabolism ; Female ; Fetal Proteins - genetics ; Fetal Proteins - metabolism ; Fibroblasts ; Gene Expression ; Gene Expression Profiling ; Growth factors ; Histopathology ; Humans ; Immunohistochemistry ; In Situ Hybridization, Fluorescence ; Kinases ; Laboratory Medicine ; Male ; MAP Kinase Kinase Kinases - genetics ; MAP Kinase Kinase Kinases - metabolism ; Medicine ; Medicine & Public Health ; Middle Aged ; Mutation ; original-article ; Orthopedics ; Pathology ; Phosphorylation ; Proto-Oncogene Protein c-ets-2 - genetics ; Proto-Oncogene Protein c-ets-2 - metabolism ; raf Kinases - genetics ; raf Kinases - metabolism ; ras Proteins - genetics ; ras Proteins - metabolism ; Receptors, Fibroblast Growth Factor - genetics ; Receptors, Fibroblast Growth Factor - metabolism ; Signal Transduction - physiology ; Spinal Neoplasms - genetics ; Spinal Neoplasms - metabolism ; T-Box Domain Proteins - genetics ; T-Box Domain Proteins - metabolism ; Tissue Array Analysis ; Tumors ; Xenopus ; Young Adult</subject><ispartof>Modern pathology, 2009-08, Vol.22 (8), p.996-1005</ispartof><rights>United States and Canadian Academy of Pathology, Inc. 2009</rights><rights>Copyright Nature Publishing Group Aug 2009</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c473t-a8f4ab31ab58b615cab7107127135ee8b0f49aea6a92c29caa54bac22993d9503</citedby><cites>FETCH-LOGICAL-c473t-a8f4ab31ab58b615cab7107127135ee8b0f49aea6a92c29caa54bac22993d9503</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,2727,27924,27925</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/19407855$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Shalaby, Asem AE</creatorcontrib><creatorcontrib>Presneau, Nadege</creatorcontrib><creatorcontrib>Idowu, Bernadine D</creatorcontrib><creatorcontrib>Thompson, Lisa</creatorcontrib><creatorcontrib>Briggs, Timothy RW</creatorcontrib><creatorcontrib>Tirabosco, Roberto</creatorcontrib><creatorcontrib>Diss, Timothy C</creatorcontrib><creatorcontrib>Flanagan, Adrienne M</creatorcontrib><title>Analysis of the fibroblastic growth factor receptor-RAS RAF MEK ERK-ETS2 brachyury signalling pathway in chordomas</title><title>Modern pathology</title><addtitle>Mod Pathol</addtitle><addtitle>Mod Pathol</addtitle><description>Chordomas are rare primary malignant bone tumours that derive from notochord precursor cells and express brachyury, a molecule involved in notochord development. Little is known about the genetic events responsible for driving the growth of this tumour, but it is well established that brachyury is regulated through fibroblastic growth factor receptors (FGFRs) through RAS/RAF/MEK/ERK and ETS2 in ascidian, Xenopus and zebrafish, although little is known about its regulation in mammals. The aim of this study was to attempt to identify the molecular genetic events that are responsible for the pathogenesis of chordomas with particular focus on the FGFR signalling pathway on the basis of the evidence in the ascidian and Xenopus models that the expression of brachyury requires the activation of this pathway. Immunohistochemistry showed that 47 of 50 chordomas (94%) expressed at least one of the FGFRs, and western blotting showed phosphorylation of fibroblast growth factor receptor substrate 2 alpha (FRS2
α
), an adaptor signalling protein, that links FGFR to the RAS/RAF/MEK/ERK pathway. Screening for mutations in
brachyury
(all coding exons and promoter),
FGFRs 1–4
(previously reported mutations),
KRAS
(codons 12, 13, 51, 61) and
BRAF
(exons 11 and 15) failed to show any genetic alterations in 23 chordomas. Fluorescent
in situ
hybridisation analysis on
FGFR4
,
ETS2
and
brachyury
failed to show either amplification of these genes, although there was minor allelic gain in brachyury in three tumours, or translocation for
ERG
and
ETS2
loci. The key genetic events responsible for the initiation and progression of chordomas remain to be discovered.</description><subject>Adult</subject><subject>Aged</subject><subject>Aged, 80 and over</subject><subject>Blotting, Western</subject><subject>Chordoma - genetics</subject><subject>Chordoma - metabolism</subject><subject>Chromatography, High Pressure Liquid</subject><subject>Cloning</subject><subject>Cytokeratin</subject><subject>Danio rerio</subject><subject>DNA Mutational Analysis</subject><subject>Extracellular Signal-Regulated MAP Kinases - genetics</subject><subject>Extracellular Signal-Regulated MAP Kinases - metabolism</subject><subject>Female</subject><subject>Fetal Proteins - genetics</subject><subject>Fetal Proteins - metabolism</subject><subject>Fibroblasts</subject><subject>Gene Expression</subject><subject>Gene Expression Profiling</subject><subject>Growth factors</subject><subject>Histopathology</subject><subject>Humans</subject><subject>Immunohistochemistry</subject><subject>In Situ Hybridization, Fluorescence</subject><subject>Kinases</subject><subject>Laboratory Medicine</subject><subject>Male</subject><subject>MAP Kinase Kinase Kinases - genetics</subject><subject>MAP Kinase Kinase Kinases - metabolism</subject><subject>Medicine</subject><subject>Medicine & Public Health</subject><subject>Middle Aged</subject><subject>Mutation</subject><subject>original-article</subject><subject>Orthopedics</subject><subject>Pathology</subject><subject>Phosphorylation</subject><subject>Proto-Oncogene Protein c-ets-2 - genetics</subject><subject>Proto-Oncogene Protein c-ets-2 - metabolism</subject><subject>raf Kinases - genetics</subject><subject>raf Kinases - metabolism</subject><subject>ras Proteins - genetics</subject><subject>ras Proteins - metabolism</subject><subject>Receptors, Fibroblast Growth Factor - genetics</subject><subject>Receptors, Fibroblast Growth Factor - metabolism</subject><subject>Signal Transduction - physiology</subject><subject>Spinal Neoplasms - genetics</subject><subject>Spinal Neoplasms - metabolism</subject><subject>T-Box Domain Proteins - genetics</subject><subject>T-Box Domain Proteins - metabolism</subject><subject>Tissue Array Analysis</subject><subject>Tumors</subject><subject>Xenopus</subject><subject>Young Adult</subject><issn>0893-3952</issn><issn>1530-0285</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2009</creationdate><recordtype>article</recordtype><recordid>eNqFkV1r2zAUhsXYWNJsP2A3RQzWO6f6sGzrMoS0HekoJNm1OVLk2MG2Usmm-N9PJiGFXWwgkEDP-xyJF6FvlMwp4dl9Y_cn6Epbzxkhcp7wD2hKBScRYZn4iKYkkzziUrAJuvH-SAiNRcY-owmVMUkzIabILVqoB195bAvclQYXlXJW1eC7SuODs29diQvQnXXYGW1O4RBtFlu8WTzgX6s1Xm3W0Wq3ZVg50OXQuwH76hCkddUe8Pi8Nxhw1WJdWre3Dfgv6FMBtTdfL_sM_X5Y7ZZP0fPL48_l4jnSccq7CLIiBsUpKJGphAoNKqUkpSylXBiTKVLEEgwkIJlmUgOIWIFmTEq-l4LwGbo7e0_OvvbGd3lTeW3qGlpje58nqYiZIPF_QUZpmnLJAvj9L_Boexf-GhhGw6KSB4ieIe2s984U-clVDbghpyQfa8uvteVjbXkyZm4v4l41Zv-euPQUAHYGfLhqD8a9T_6X9cc51ELXO3O1XskRDNwfBGGz-g</recordid><startdate>20090801</startdate><enddate>20090801</enddate><creator>Shalaby, Asem AE</creator><creator>Presneau, Nadege</creator><creator>Idowu, Bernadine D</creator><creator>Thompson, Lisa</creator><creator>Briggs, Timothy RW</creator><creator>Tirabosco, Roberto</creator><creator>Diss, Timothy C</creator><creator>Flanagan, Adrienne M</creator><general>Nature Publishing Group US</general><general>Elsevier Limited</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QP</scope><scope>7RV</scope><scope>7TK</scope><scope>7X7</scope><scope>7XB</scope><scope>88A</scope><scope>88E</scope><scope>8AO</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>KB0</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M7P</scope><scope>NAPCQ</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>7TO</scope><scope>H94</scope><scope>7X8</scope></search><sort><creationdate>20090801</creationdate><title>Analysis of the fibroblastic growth factor receptor-RAS RAF MEK ERK-ETS2 brachyury signalling pathway in chordomas</title><author>Shalaby, Asem AE ; Presneau, Nadege ; Idowu, Bernadine D ; Thompson, Lisa ; Briggs, Timothy RW ; Tirabosco, Roberto ; Diss, Timothy C ; Flanagan, Adrienne M</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c473t-a8f4ab31ab58b615cab7107127135ee8b0f49aea6a92c29caa54bac22993d9503</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2009</creationdate><topic>Adult</topic><topic>Aged</topic><topic>Aged, 80 and over</topic><topic>Blotting, Western</topic><topic>Chordoma - genetics</topic><topic>Chordoma - metabolism</topic><topic>Chromatography, High Pressure Liquid</topic><topic>Cloning</topic><topic>Cytokeratin</topic><topic>Danio rerio</topic><topic>DNA Mutational Analysis</topic><topic>Extracellular Signal-Regulated MAP Kinases - genetics</topic><topic>Extracellular Signal-Regulated MAP Kinases - metabolism</topic><topic>Female</topic><topic>Fetal Proteins - genetics</topic><topic>Fetal Proteins - metabolism</topic><topic>Fibroblasts</topic><topic>Gene Expression</topic><topic>Gene Expression Profiling</topic><topic>Growth factors</topic><topic>Histopathology</topic><topic>Humans</topic><topic>Immunohistochemistry</topic><topic>In Situ Hybridization, Fluorescence</topic><topic>Kinases</topic><topic>Laboratory Medicine</topic><topic>Male</topic><topic>MAP Kinase Kinase Kinases - genetics</topic><topic>MAP Kinase Kinase Kinases - metabolism</topic><topic>Medicine</topic><topic>Medicine & Public Health</topic><topic>Middle Aged</topic><topic>Mutation</topic><topic>original-article</topic><topic>Orthopedics</topic><topic>Pathology</topic><topic>Phosphorylation</topic><topic>Proto-Oncogene Protein c-ets-2 - genetics</topic><topic>Proto-Oncogene Protein c-ets-2 - metabolism</topic><topic>raf Kinases - genetics</topic><topic>raf Kinases - metabolism</topic><topic>ras Proteins - genetics</topic><topic>ras Proteins - metabolism</topic><topic>Receptors, Fibroblast Growth Factor - genetics</topic><topic>Receptors, Fibroblast Growth Factor - metabolism</topic><topic>Signal Transduction - physiology</topic><topic>Spinal Neoplasms - genetics</topic><topic>Spinal Neoplasms - metabolism</topic><topic>T-Box Domain Proteins - genetics</topic><topic>T-Box Domain Proteins - metabolism</topic><topic>Tissue Array Analysis</topic><topic>Tumors</topic><topic>Xenopus</topic><topic>Young Adult</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Shalaby, Asem AE</creatorcontrib><creatorcontrib>Presneau, Nadege</creatorcontrib><creatorcontrib>Idowu, Bernadine D</creatorcontrib><creatorcontrib>Thompson, Lisa</creatorcontrib><creatorcontrib>Briggs, Timothy RW</creatorcontrib><creatorcontrib>Tirabosco, Roberto</creatorcontrib><creatorcontrib>Diss, Timothy C</creatorcontrib><creatorcontrib>Flanagan, Adrienne M</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Calcium & Calcified Tissue Abstracts</collection><collection>ProQuest Nursing & Allied Health Database</collection><collection>Neurosciences Abstracts</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Nursing & Allied Health Database (Alumni Edition)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>PML(ProQuest Medical Library)</collection><collection>Biological Science Database</collection><collection>Nursing & Allied Health Premium</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>Modern pathology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Shalaby, Asem AE</au><au>Presneau, Nadege</au><au>Idowu, Bernadine D</au><au>Thompson, Lisa</au><au>Briggs, Timothy RW</au><au>Tirabosco, Roberto</au><au>Diss, Timothy C</au><au>Flanagan, Adrienne M</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Analysis of the fibroblastic growth factor receptor-RAS RAF MEK ERK-ETS2 brachyury signalling pathway in chordomas</atitle><jtitle>Modern pathology</jtitle><stitle>Mod Pathol</stitle><addtitle>Mod Pathol</addtitle><date>2009-08-01</date><risdate>2009</risdate><volume>22</volume><issue>8</issue><spage>996</spage><epage>1005</epage><pages>996-1005</pages><issn>0893-3952</issn><eissn>1530-0285</eissn><coden>MODPEO</coden><abstract>Chordomas are rare primary malignant bone tumours that derive from notochord precursor cells and express brachyury, a molecule involved in notochord development. Little is known about the genetic events responsible for driving the growth of this tumour, but it is well established that brachyury is regulated through fibroblastic growth factor receptors (FGFRs) through RAS/RAF/MEK/ERK and ETS2 in ascidian, Xenopus and zebrafish, although little is known about its regulation in mammals. The aim of this study was to attempt to identify the molecular genetic events that are responsible for the pathogenesis of chordomas with particular focus on the FGFR signalling pathway on the basis of the evidence in the ascidian and Xenopus models that the expression of brachyury requires the activation of this pathway. Immunohistochemistry showed that 47 of 50 chordomas (94%) expressed at least one of the FGFRs, and western blotting showed phosphorylation of fibroblast growth factor receptor substrate 2 alpha (FRS2
α
), an adaptor signalling protein, that links FGFR to the RAS/RAF/MEK/ERK pathway. Screening for mutations in
brachyury
(all coding exons and promoter),
FGFRs 1–4
(previously reported mutations),
KRAS
(codons 12, 13, 51, 61) and
BRAF
(exons 11 and 15) failed to show any genetic alterations in 23 chordomas. Fluorescent
in situ
hybridisation analysis on
FGFR4
,
ETS2
and
brachyury
failed to show either amplification of these genes, although there was minor allelic gain in brachyury in three tumours, or translocation for
ERG
and
ETS2
loci. The key genetic events responsible for the initiation and progression of chordomas remain to be discovered.</abstract><cop>New York</cop><pub>Nature Publishing Group US</pub><pmid>19407855</pmid><doi>10.1038/modpathol.2009.63</doi><tpages>10</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0893-3952 |
ispartof | Modern pathology, 2009-08, Vol.22 (8), p.996-1005 |
issn | 0893-3952 1530-0285 |
language | eng |
recordid | cdi_proquest_miscellaneous_67542504 |
source | Nature |
subjects | Adult Aged Aged, 80 and over Blotting, Western Chordoma - genetics Chordoma - metabolism Chromatography, High Pressure Liquid Cloning Cytokeratin Danio rerio DNA Mutational Analysis Extracellular Signal-Regulated MAP Kinases - genetics Extracellular Signal-Regulated MAP Kinases - metabolism Female Fetal Proteins - genetics Fetal Proteins - metabolism Fibroblasts Gene Expression Gene Expression Profiling Growth factors Histopathology Humans Immunohistochemistry In Situ Hybridization, Fluorescence Kinases Laboratory Medicine Male MAP Kinase Kinase Kinases - genetics MAP Kinase Kinase Kinases - metabolism Medicine Medicine & Public Health Middle Aged Mutation original-article Orthopedics Pathology Phosphorylation Proto-Oncogene Protein c-ets-2 - genetics Proto-Oncogene Protein c-ets-2 - metabolism raf Kinases - genetics raf Kinases - metabolism ras Proteins - genetics ras Proteins - metabolism Receptors, Fibroblast Growth Factor - genetics Receptors, Fibroblast Growth Factor - metabolism Signal Transduction - physiology Spinal Neoplasms - genetics Spinal Neoplasms - metabolism T-Box Domain Proteins - genetics T-Box Domain Proteins - metabolism Tissue Array Analysis Tumors Xenopus Young Adult |
title | Analysis of the fibroblastic growth factor receptor-RAS RAF MEK ERK-ETS2 brachyury signalling pathway in chordomas |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-26T17%3A40%3A37IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Analysis%20of%20the%20fibroblastic%20growth%20factor%20receptor-RAS%20RAF%20MEK%20ERK-ETS2%20brachyury%20signalling%20pathway%20in%20chordomas&rft.jtitle=Modern%20pathology&rft.au=Shalaby,%20Asem%20AE&rft.date=2009-08-01&rft.volume=22&rft.issue=8&rft.spage=996&rft.epage=1005&rft.pages=996-1005&rft.issn=0893-3952&rft.eissn=1530-0285&rft.coden=MODPEO&rft_id=info:doi/10.1038/modpathol.2009.63&rft_dat=%3Cproquest_cross%3E21177392%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c473t-a8f4ab31ab58b615cab7107127135ee8b0f49aea6a92c29caa54bac22993d9503%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=221221193&rft_id=info:pmid/19407855&rfr_iscdi=true |