Loading…
Calculation of partition functions by measuring component distributions
A new algorithm is presented, which allows us to calculate numerically the partition function Z for systems, which can be described by arbitrary interaction graphs and lattices, e.g., Ising models or Potts models (for arbitrary values q>0), including random or diluted models. The new approach is...
Saved in:
Published in: | Physical review letters 2005-02, Vol.94 (5), p.050601.1-050601.4, Article 050601 |
---|---|
Main Author: | |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c337t-1980180c7678b078a8a40233ae03e967e97c06318f5219e50417dbd7d3c118813 |
---|---|
cites | cdi_FETCH-LOGICAL-c337t-1980180c7678b078a8a40233ae03e967e97c06318f5219e50417dbd7d3c118813 |
container_end_page | 050601.4 |
container_issue | 5 |
container_start_page | 050601.1 |
container_title | Physical review letters |
container_volume | 94 |
creator | HARTMANN, A. K |
description | A new algorithm is presented, which allows us to calculate numerically the partition function Z for systems, which can be described by arbitrary interaction graphs and lattices, e.g., Ising models or Potts models (for arbitrary values q>0), including random or diluted models. The new approach is suitable for large systems. The basic idea is to measure the distribution of the number of connected components in the corresponding Fortuin-Kasteleyn representation and to compare with the case of zero degrees of freedom, where the exact result Z=1 is known. As an application, d=2 and d=3 dimensional ferromagnetic Potts models are studied, and the critical values qc, where the transition changes from second to first order, are determined. Large systems of sizes N=1000(2) and N=100(3) are treated. The critical value qc(d=2)=4 is confirmed and qc(d=3)=2.35(5) is found. |
doi_str_mv | 10.1103/PhysRevLett.94.050601 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_67542929</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>67542929</sourcerecordid><originalsourceid>FETCH-LOGICAL-c337t-1980180c7678b078a8a40233ae03e967e97c06318f5219e50417dbd7d3c118813</originalsourceid><addsrcrecordid>eNpNkE1LxDAQhoMo7rr6E5Re9NZ1Jmmb5CiLrsKCInoOaZpqpV8mqbD_3u5uQU_zDjzvDDyEXCIsEYHdvnxu_av92dgQljJZQgoZ4BGZI3AZc8TkmMwBGMYSgM_ImfdfAIA0E6dkhikXLKN0TtYrXZuh1qHq2qgro167UO2XcmjNLvgo30aN1X5wVfsRma7pu9a2ISoqH1yVD3vonJyUuvb2YpoL8v5w_7Z6jDfP66fV3SY2jPEQoxSAAgzPuMiBCy10ApQxbYFZmXEruYGMoShTitKmkCAv8oIXzCAKgWxBbg53e9d9D9YH1VTe2LrWre0GrzKeJlRSOYLpATSu897ZUvWuarTbKgS1M6j-GVQyUQeDY-9qejDkjS3-WpOyEbieAO2NrkunW1P5Py4bwZQC-wWVK3xB</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>67542929</pqid></control><display><type>article</type><title>Calculation of partition functions by measuring component distributions</title><source>American Physical Society:Jisc Collections:APS Read and Publish 2023-2025 (reading list)</source><creator>HARTMANN, A. K</creator><creatorcontrib>HARTMANN, A. K</creatorcontrib><description>A new algorithm is presented, which allows us to calculate numerically the partition function Z for systems, which can be described by arbitrary interaction graphs and lattices, e.g., Ising models or Potts models (for arbitrary values q>0), including random or diluted models. The new approach is suitable for large systems. The basic idea is to measure the distribution of the number of connected components in the corresponding Fortuin-Kasteleyn representation and to compare with the case of zero degrees of freedom, where the exact result Z=1 is known. As an application, d=2 and d=3 dimensional ferromagnetic Potts models are studied, and the critical values qc, where the transition changes from second to first order, are determined. Large systems of sizes N=1000(2) and N=100(3) are treated. The critical value qc(d=2)=4 is confirmed and qc(d=3)=2.35(5) is found.</description><identifier>ISSN: 0031-9007</identifier><identifier>EISSN: 1079-7114</identifier><identifier>DOI: 10.1103/PhysRevLett.94.050601</identifier><identifier>PMID: 15783622</identifier><identifier>CODEN: PRLTAO</identifier><language>eng</language><publisher>Ridge, NY: American Physical Society</publisher><subject>Exact sciences and technology ; Physics</subject><ispartof>Physical review letters, 2005-02, Vol.94 (5), p.050601.1-050601.4, Article 050601</ispartof><rights>2005 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c337t-1980180c7678b078a8a40233ae03e967e97c06318f5219e50417dbd7d3c118813</citedby><cites>FETCH-LOGICAL-c337t-1980180c7678b078a8a40233ae03e967e97c06318f5219e50417dbd7d3c118813</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=16578520$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/15783622$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>HARTMANN, A. K</creatorcontrib><title>Calculation of partition functions by measuring component distributions</title><title>Physical review letters</title><addtitle>Phys Rev Lett</addtitle><description>A new algorithm is presented, which allows us to calculate numerically the partition function Z for systems, which can be described by arbitrary interaction graphs and lattices, e.g., Ising models or Potts models (for arbitrary values q>0), including random or diluted models. The new approach is suitable for large systems. The basic idea is to measure the distribution of the number of connected components in the corresponding Fortuin-Kasteleyn representation and to compare with the case of zero degrees of freedom, where the exact result Z=1 is known. As an application, d=2 and d=3 dimensional ferromagnetic Potts models are studied, and the critical values qc, where the transition changes from second to first order, are determined. Large systems of sizes N=1000(2) and N=100(3) are treated. The critical value qc(d=2)=4 is confirmed and qc(d=3)=2.35(5) is found.</description><subject>Exact sciences and technology</subject><subject>Physics</subject><issn>0031-9007</issn><issn>1079-7114</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2005</creationdate><recordtype>article</recordtype><recordid>eNpNkE1LxDAQhoMo7rr6E5Re9NZ1Jmmb5CiLrsKCInoOaZpqpV8mqbD_3u5uQU_zDjzvDDyEXCIsEYHdvnxu_av92dgQljJZQgoZ4BGZI3AZc8TkmMwBGMYSgM_ImfdfAIA0E6dkhikXLKN0TtYrXZuh1qHq2qgro167UO2XcmjNLvgo30aN1X5wVfsRma7pu9a2ISoqH1yVD3vonJyUuvb2YpoL8v5w_7Z6jDfP66fV3SY2jPEQoxSAAgzPuMiBCy10ApQxbYFZmXEruYGMoShTitKmkCAv8oIXzCAKgWxBbg53e9d9D9YH1VTe2LrWre0GrzKeJlRSOYLpATSu897ZUvWuarTbKgS1M6j-GVQyUQeDY-9qejDkjS3-WpOyEbieAO2NrkunW1P5Py4bwZQC-wWVK3xB</recordid><startdate>20050211</startdate><enddate>20050211</enddate><creator>HARTMANN, A. K</creator><general>American Physical Society</general><scope>IQODW</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope></search><sort><creationdate>20050211</creationdate><title>Calculation of partition functions by measuring component distributions</title><author>HARTMANN, A. K</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c337t-1980180c7678b078a8a40233ae03e967e97c06318f5219e50417dbd7d3c118813</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2005</creationdate><topic>Exact sciences and technology</topic><topic>Physics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>HARTMANN, A. K</creatorcontrib><collection>Pascal-Francis</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Physical review letters</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>HARTMANN, A. K</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Calculation of partition functions by measuring component distributions</atitle><jtitle>Physical review letters</jtitle><addtitle>Phys Rev Lett</addtitle><date>2005-02-11</date><risdate>2005</risdate><volume>94</volume><issue>5</issue><spage>050601.1</spage><epage>050601.4</epage><pages>050601.1-050601.4</pages><artnum>050601</artnum><issn>0031-9007</issn><eissn>1079-7114</eissn><coden>PRLTAO</coden><abstract>A new algorithm is presented, which allows us to calculate numerically the partition function Z for systems, which can be described by arbitrary interaction graphs and lattices, e.g., Ising models or Potts models (for arbitrary values q>0), including random or diluted models. The new approach is suitable for large systems. The basic idea is to measure the distribution of the number of connected components in the corresponding Fortuin-Kasteleyn representation and to compare with the case of zero degrees of freedom, where the exact result Z=1 is known. As an application, d=2 and d=3 dimensional ferromagnetic Potts models are studied, and the critical values qc, where the transition changes from second to first order, are determined. Large systems of sizes N=1000(2) and N=100(3) are treated. The critical value qc(d=2)=4 is confirmed and qc(d=3)=2.35(5) is found.</abstract><cop>Ridge, NY</cop><pub>American Physical Society</pub><pmid>15783622</pmid><doi>10.1103/PhysRevLett.94.050601</doi><tpages>1</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0031-9007 |
ispartof | Physical review letters, 2005-02, Vol.94 (5), p.050601.1-050601.4, Article 050601 |
issn | 0031-9007 1079-7114 |
language | eng |
recordid | cdi_proquest_miscellaneous_67542929 |
source | American Physical Society:Jisc Collections:APS Read and Publish 2023-2025 (reading list) |
subjects | Exact sciences and technology Physics |
title | Calculation of partition functions by measuring component distributions |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-25T21%3A20%3A36IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Calculation%20of%20partition%20functions%20by%20measuring%20component%20distributions&rft.jtitle=Physical%20review%20letters&rft.au=HARTMANN,%20A.%20K&rft.date=2005-02-11&rft.volume=94&rft.issue=5&rft.spage=050601.1&rft.epage=050601.4&rft.pages=050601.1-050601.4&rft.artnum=050601&rft.issn=0031-9007&rft.eissn=1079-7114&rft.coden=PRLTAO&rft_id=info:doi/10.1103/PhysRevLett.94.050601&rft_dat=%3Cproquest_cross%3E67542929%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c337t-1980180c7678b078a8a40233ae03e967e97c06318f5219e50417dbd7d3c118813%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=67542929&rft_id=info:pmid/15783622&rfr_iscdi=true |