Loading…

Human hippocampal activation during stance and locomotion: fMRI study on healthy, blind, and vestibular-loss subjects

The hippocampal formation, including the parahippocampal gyrus, is known to be involved in different aspects of navigation and spatial orientation. Recently, bilateral parahippocampal activation during mental imagery of walking and running was demonstrated in fMRI. For the current study the question...

Full description

Saved in:
Bibliographic Details
Published in:Annals of the New York Academy of Sciences 2009-05, Vol.1164 (1), p.229-235
Main Authors: Jahn, Klaus, Wagner, Judith, Deutschländer, Angela, Kalla, Roger, Hüfner, Katharina, Stephan, Thomas, Strupp, Michael, Brandt, Thomas
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:The hippocampal formation, including the parahippocampal gyrus, is known to be involved in different aspects of navigation and spatial orientation. Recently, bilateral parahippocampal activation during mental imagery of walking and running was demonstrated in fMRI. For the current study the question was whether distinct functional regions within the hippocampal formation could be defined from the analysis of brain activity during imagery of stance and locomotion in healthy, blind, and vestibular-loss subjects. Using the same experimental paradigm in all groups (fMRI during mental imagery of stance and locomotion after training of actual performance, regions of interest [ROI] analysis), activations were found in the hippocampal formation, predominantly on the right side, in all subjects. In healthy subjects, standing was associated with anterior hippocampal activation; during locomotion widespread activity was found in the right parahippocampal gyrus. Compared to healthy controls, blind subjects showed less activity in the right dorsal parahippocampal region, whereas vestibular-loss subjects had less activity in the anterior hippocampal formation. The findings show that the hippocampal formation in humans processes visual and vestibular signals in different regions. The data support the assumption that the anterior hippocampus and the entorhinal cortex in the parahippocampal region are input areas for vestibular and somatosensory signals. Posterior parahippocampal and fusiform gyri, which are connected to visual cortical areas, are more important for visually guided locomotion and landmark recognition during navigation. The right-sided dominance reflects the importance of the right hemisphere for spatial orientation.
ISSN:0077-8923
1749-6632
DOI:10.1111/j.1749-6632.2009.03770.x