Loading…

Dual luciferase labelling for non-invasive bioluminescence imaging of mesenchymal stromal cell chondrogenic differentiation in demineralized bone matrix scaffolds

Abstract Non-invasive bioluminescence imaging (BLI) to monitor changes in gene expression of cells implanted in live animals should facilitate the development of biomaterial scaffolds for tissue regeneration. We show that, in vitro, induction of chondrogenic differentiation in mouse bone marrow stro...

Full description

Saved in:
Bibliographic Details
Published in:Biomaterials 2009-10, Vol.30 (28), p.4986-4995
Main Authors: Vilalta, Marta, Jorgensen, Christian, Dégano, Irene R, Chernajovsky, Yuti, Gould, David, Noël, Danièle, Andrades, José A, Becerra, José, Rubio, Nuria, Blanco, Jerónimo
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c495t-6ef5d467bc01ca0fa52d5025d91045a18d5d12c98aeb4725e47052606e279c463
cites cdi_FETCH-LOGICAL-c495t-6ef5d467bc01ca0fa52d5025d91045a18d5d12c98aeb4725e47052606e279c463
container_end_page 4995
container_issue 28
container_start_page 4986
container_title Biomaterials
container_volume 30
creator Vilalta, Marta
Jorgensen, Christian
Dégano, Irene R
Chernajovsky, Yuti
Gould, David
Noël, Danièle
Andrades, José A
Becerra, José
Rubio, Nuria
Blanco, Jerónimo
description Abstract Non-invasive bioluminescence imaging (BLI) to monitor changes in gene expression of cells implanted in live animals should facilitate the development of biomaterial scaffolds for tissue regeneration. We show that, in vitro, induction of chondrogenic differentiation in mouse bone marrow stromal cell line (CL1) and human adipose tissue derived mesenchymal stromal cells (hAMSCs), permanently transduced with a procollagen II (COL2A1) promoter driving a firefly luciferase gene reporter (PLuc) (COL2A1p·PLuc), induces PLuc expression in correlation with increases in COL2A1 and Sox9 mRNA expression and acquisition of chondrocytic phenotype. To be able to simultaneously monitor in vivo cell differentiation and proliferation, COL2A1p·PLuc labelled cells were also genetically labelled with a renilla luciferase (RLuc) gene driven by a constitutively active cytomegalovirus promoter, and then seeded in demineralized bone matrix (DBM) subcutaneously implanted in SCID mice. Non-invasive BLI monitoring of the implanted mice showed that the PLuc/RLuc ratio reports on gene expression changes indicative of cell differentiation. Large (CL1) and moderated (hAMSCs) changes in the PLuc/RLuc ratio over a 6 week period, revealed different patterns of in vivo chondrogenic differentiation for the CL1 cell line and primary MSCs, in agreement with in vitro published data and our results from histological analysis of DBM sections. This double bioluminescence labelling strategy together with BLI imaging to analyze behaviour of cells implanted in live animals should facilitate the development of progenitor cell/scaffold combinations for tissue repair.
doi_str_mv 10.1016/j.biomaterials.2009.05.056
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_67552436</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>1_s2_0_S0142961209005729</els_id><sourcerecordid>20695196</sourcerecordid><originalsourceid>FETCH-LOGICAL-c495t-6ef5d467bc01ca0fa52d5025d91045a18d5d12c98aeb4725e47052606e279c463</originalsourceid><addsrcrecordid>eNqNUsGKFDEQbURxZ1d_QYIHbz1W0p30xIMgu64KCx7Uc0gn1bMZu5M16R52_By_1IQZULyspKCo8Oo9ql5V1UsKawpUvN6texcmPWN0ekxrBiDXwHOIR9WKbrpNzSXwx9UKaMtqKSg7q85T2kGuoWVPqzMqeSMb0ayqX1eLHsm4GDdg1AnJqHscR-e3ZAiR-OBr5_c6uT2SrDouk_OYDHqDxE16W4BhIBOm_HV7mDJZmmMo2WQeYm6DtzFs0TtDrBuyCvrZ6dkFT5wnFgth1KP7iZb0wSPJk0V3T5LRwxBGm55VT4Y8Jz4_5Yvq2_X7r5cf65vPHz5dvrupTSv5XAscuG1F1xugRsOgObMcGLeSQss13VhuKTNyo7FvO8ax7YAzAQJZJ00rmovq1ZH3LoYfC6ZZTS6VIbTHsCQlOs5Z2zwMbFre5ScfBDIQklNZGN8cgSaGlCIO6i7m7caDoqCK52qn_vZcFc8V8Byl-cVJZekntH9aTyZnwNURgHl7e4dRJeOKg9ZFNLOywf2fztt_aEy-E2f0-B0PmHZhib70UJWYAvWlXF85PpAAvGOy-Q2Ja92a</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>20695196</pqid></control><display><type>article</type><title>Dual luciferase labelling for non-invasive bioluminescence imaging of mesenchymal stromal cell chondrogenic differentiation in demineralized bone matrix scaffolds</title><source>ScienceDirect Freedom Collection 2022-2024</source><creator>Vilalta, Marta ; Jorgensen, Christian ; Dégano, Irene R ; Chernajovsky, Yuti ; Gould, David ; Noël, Danièle ; Andrades, José A ; Becerra, José ; Rubio, Nuria ; Blanco, Jerónimo</creator><creatorcontrib>Vilalta, Marta ; Jorgensen, Christian ; Dégano, Irene R ; Chernajovsky, Yuti ; Gould, David ; Noël, Danièle ; Andrades, José A ; Becerra, José ; Rubio, Nuria ; Blanco, Jerónimo</creatorcontrib><description>Abstract Non-invasive bioluminescence imaging (BLI) to monitor changes in gene expression of cells implanted in live animals should facilitate the development of biomaterial scaffolds for tissue regeneration. We show that, in vitro, induction of chondrogenic differentiation in mouse bone marrow stromal cell line (CL1) and human adipose tissue derived mesenchymal stromal cells (hAMSCs), permanently transduced with a procollagen II (COL2A1) promoter driving a firefly luciferase gene reporter (PLuc) (COL2A1p·PLuc), induces PLuc expression in correlation with increases in COL2A1 and Sox9 mRNA expression and acquisition of chondrocytic phenotype. To be able to simultaneously monitor in vivo cell differentiation and proliferation, COL2A1p·PLuc labelled cells were also genetically labelled with a renilla luciferase (RLuc) gene driven by a constitutively active cytomegalovirus promoter, and then seeded in demineralized bone matrix (DBM) subcutaneously implanted in SCID mice. Non-invasive BLI monitoring of the implanted mice showed that the PLuc/RLuc ratio reports on gene expression changes indicative of cell differentiation. Large (CL1) and moderated (hAMSCs) changes in the PLuc/RLuc ratio over a 6 week period, revealed different patterns of in vivo chondrogenic differentiation for the CL1 cell line and primary MSCs, in agreement with in vitro published data and our results from histological analysis of DBM sections. This double bioluminescence labelling strategy together with BLI imaging to analyze behaviour of cells implanted in live animals should facilitate the development of progenitor cell/scaffold combinations for tissue repair.</description><identifier>ISSN: 0142-9612</identifier><identifier>EISSN: 1878-5905</identifier><identifier>DOI: 10.1016/j.biomaterials.2009.05.056</identifier><identifier>PMID: 19539363</identifier><language>eng</language><publisher>Netherlands: Elsevier Ltd</publisher><subject>Adipose Tissue - cytology ; Advanced Basic Science ; Animals ; Bioluminescence imaging (BLI) ; Bone Marrow Cells - cytology ; Cell Differentiation ; Cell Line ; Cell Proliferation ; Chondrocytes - cytology ; Collagen type II (COL2A1) ; Collagen Type II - genetics ; Collagen Type II - metabolism ; Cytomegalovirus ; Demineralized bone matrix (DBM) ; Dentistry ; Diagnostic Imaging - methods ; Gene Expression Regulation ; Genes, Reporter ; Human adipose tissue derived mesenchymal stromal cells (hAMSCs) ; Humans ; Luciferases, Firefly - analysis ; Luciferases, Firefly - genetics ; Luciferases, Firefly - metabolism ; Luminescent Measurements - methods ; Mesenchymal Stem Cell Transplantation ; Mesenchymal Stromal Cells - cytology ; Mice ; Mice, SCID ; Murine cell line (CL1) ; Osteogenesis ; Renilla ; Stromal Cells - cytology ; Tissue Scaffolds ; Transduction, Genetic</subject><ispartof>Biomaterials, 2009-10, Vol.30 (28), p.4986-4995</ispartof><rights>Elsevier Ltd</rights><rights>2009 Elsevier Ltd</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c495t-6ef5d467bc01ca0fa52d5025d91045a18d5d12c98aeb4725e47052606e279c463</citedby><cites>FETCH-LOGICAL-c495t-6ef5d467bc01ca0fa52d5025d91045a18d5d12c98aeb4725e47052606e279c463</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/19539363$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Vilalta, Marta</creatorcontrib><creatorcontrib>Jorgensen, Christian</creatorcontrib><creatorcontrib>Dégano, Irene R</creatorcontrib><creatorcontrib>Chernajovsky, Yuti</creatorcontrib><creatorcontrib>Gould, David</creatorcontrib><creatorcontrib>Noël, Danièle</creatorcontrib><creatorcontrib>Andrades, José A</creatorcontrib><creatorcontrib>Becerra, José</creatorcontrib><creatorcontrib>Rubio, Nuria</creatorcontrib><creatorcontrib>Blanco, Jerónimo</creatorcontrib><title>Dual luciferase labelling for non-invasive bioluminescence imaging of mesenchymal stromal cell chondrogenic differentiation in demineralized bone matrix scaffolds</title><title>Biomaterials</title><addtitle>Biomaterials</addtitle><description>Abstract Non-invasive bioluminescence imaging (BLI) to monitor changes in gene expression of cells implanted in live animals should facilitate the development of biomaterial scaffolds for tissue regeneration. We show that, in vitro, induction of chondrogenic differentiation in mouse bone marrow stromal cell line (CL1) and human adipose tissue derived mesenchymal stromal cells (hAMSCs), permanently transduced with a procollagen II (COL2A1) promoter driving a firefly luciferase gene reporter (PLuc) (COL2A1p·PLuc), induces PLuc expression in correlation with increases in COL2A1 and Sox9 mRNA expression and acquisition of chondrocytic phenotype. To be able to simultaneously monitor in vivo cell differentiation and proliferation, COL2A1p·PLuc labelled cells were also genetically labelled with a renilla luciferase (RLuc) gene driven by a constitutively active cytomegalovirus promoter, and then seeded in demineralized bone matrix (DBM) subcutaneously implanted in SCID mice. Non-invasive BLI monitoring of the implanted mice showed that the PLuc/RLuc ratio reports on gene expression changes indicative of cell differentiation. Large (CL1) and moderated (hAMSCs) changes in the PLuc/RLuc ratio over a 6 week period, revealed different patterns of in vivo chondrogenic differentiation for the CL1 cell line and primary MSCs, in agreement with in vitro published data and our results from histological analysis of DBM sections. This double bioluminescence labelling strategy together with BLI imaging to analyze behaviour of cells implanted in live animals should facilitate the development of progenitor cell/scaffold combinations for tissue repair.</description><subject>Adipose Tissue - cytology</subject><subject>Advanced Basic Science</subject><subject>Animals</subject><subject>Bioluminescence imaging (BLI)</subject><subject>Bone Marrow Cells - cytology</subject><subject>Cell Differentiation</subject><subject>Cell Line</subject><subject>Cell Proliferation</subject><subject>Chondrocytes - cytology</subject><subject>Collagen type II (COL2A1)</subject><subject>Collagen Type II - genetics</subject><subject>Collagen Type II - metabolism</subject><subject>Cytomegalovirus</subject><subject>Demineralized bone matrix (DBM)</subject><subject>Dentistry</subject><subject>Diagnostic Imaging - methods</subject><subject>Gene Expression Regulation</subject><subject>Genes, Reporter</subject><subject>Human adipose tissue derived mesenchymal stromal cells (hAMSCs)</subject><subject>Humans</subject><subject>Luciferases, Firefly - analysis</subject><subject>Luciferases, Firefly - genetics</subject><subject>Luciferases, Firefly - metabolism</subject><subject>Luminescent Measurements - methods</subject><subject>Mesenchymal Stem Cell Transplantation</subject><subject>Mesenchymal Stromal Cells - cytology</subject><subject>Mice</subject><subject>Mice, SCID</subject><subject>Murine cell line (CL1)</subject><subject>Osteogenesis</subject><subject>Renilla</subject><subject>Stromal Cells - cytology</subject><subject>Tissue Scaffolds</subject><subject>Transduction, Genetic</subject><issn>0142-9612</issn><issn>1878-5905</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2009</creationdate><recordtype>article</recordtype><recordid>eNqNUsGKFDEQbURxZ1d_QYIHbz1W0p30xIMgu64KCx7Uc0gn1bMZu5M16R52_By_1IQZULyspKCo8Oo9ql5V1UsKawpUvN6texcmPWN0ekxrBiDXwHOIR9WKbrpNzSXwx9UKaMtqKSg7q85T2kGuoWVPqzMqeSMb0ayqX1eLHsm4GDdg1AnJqHscR-e3ZAiR-OBr5_c6uT2SrDouk_OYDHqDxE16W4BhIBOm_HV7mDJZmmMo2WQeYm6DtzFs0TtDrBuyCvrZ6dkFT5wnFgth1KP7iZb0wSPJk0V3T5LRwxBGm55VT4Y8Jz4_5Yvq2_X7r5cf65vPHz5dvrupTSv5XAscuG1F1xugRsOgObMcGLeSQss13VhuKTNyo7FvO8ax7YAzAQJZJ00rmovq1ZH3LoYfC6ZZTS6VIbTHsCQlOs5Z2zwMbFre5ScfBDIQklNZGN8cgSaGlCIO6i7m7caDoqCK52qn_vZcFc8V8Byl-cVJZekntH9aTyZnwNURgHl7e4dRJeOKg9ZFNLOywf2fztt_aEy-E2f0-B0PmHZhib70UJWYAvWlXF85PpAAvGOy-Q2Ja92a</recordid><startdate>20091001</startdate><enddate>20091001</enddate><creator>Vilalta, Marta</creator><creator>Jorgensen, Christian</creator><creator>Dégano, Irene R</creator><creator>Chernajovsky, Yuti</creator><creator>Gould, David</creator><creator>Noël, Danièle</creator><creator>Andrades, José A</creator><creator>Becerra, José</creator><creator>Rubio, Nuria</creator><creator>Blanco, Jerónimo</creator><general>Elsevier Ltd</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QO</scope><scope>7QP</scope><scope>7U9</scope><scope>8FD</scope><scope>FR3</scope><scope>H94</scope><scope>P64</scope><scope>7SR</scope><scope>7TB</scope><scope>7U5</scope><scope>8BQ</scope><scope>F28</scope><scope>JG9</scope><scope>L7M</scope><scope>7X8</scope></search><sort><creationdate>20091001</creationdate><title>Dual luciferase labelling for non-invasive bioluminescence imaging of mesenchymal stromal cell chondrogenic differentiation in demineralized bone matrix scaffolds</title><author>Vilalta, Marta ; Jorgensen, Christian ; Dégano, Irene R ; Chernajovsky, Yuti ; Gould, David ; Noël, Danièle ; Andrades, José A ; Becerra, José ; Rubio, Nuria ; Blanco, Jerónimo</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c495t-6ef5d467bc01ca0fa52d5025d91045a18d5d12c98aeb4725e47052606e279c463</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2009</creationdate><topic>Adipose Tissue - cytology</topic><topic>Advanced Basic Science</topic><topic>Animals</topic><topic>Bioluminescence imaging (BLI)</topic><topic>Bone Marrow Cells - cytology</topic><topic>Cell Differentiation</topic><topic>Cell Line</topic><topic>Cell Proliferation</topic><topic>Chondrocytes - cytology</topic><topic>Collagen type II (COL2A1)</topic><topic>Collagen Type II - genetics</topic><topic>Collagen Type II - metabolism</topic><topic>Cytomegalovirus</topic><topic>Demineralized bone matrix (DBM)</topic><topic>Dentistry</topic><topic>Diagnostic Imaging - methods</topic><topic>Gene Expression Regulation</topic><topic>Genes, Reporter</topic><topic>Human adipose tissue derived mesenchymal stromal cells (hAMSCs)</topic><topic>Humans</topic><topic>Luciferases, Firefly - analysis</topic><topic>Luciferases, Firefly - genetics</topic><topic>Luciferases, Firefly - metabolism</topic><topic>Luminescent Measurements - methods</topic><topic>Mesenchymal Stem Cell Transplantation</topic><topic>Mesenchymal Stromal Cells - cytology</topic><topic>Mice</topic><topic>Mice, SCID</topic><topic>Murine cell line (CL1)</topic><topic>Osteogenesis</topic><topic>Renilla</topic><topic>Stromal Cells - cytology</topic><topic>Tissue Scaffolds</topic><topic>Transduction, Genetic</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Vilalta, Marta</creatorcontrib><creatorcontrib>Jorgensen, Christian</creatorcontrib><creatorcontrib>Dégano, Irene R</creatorcontrib><creatorcontrib>Chernajovsky, Yuti</creatorcontrib><creatorcontrib>Gould, David</creatorcontrib><creatorcontrib>Noël, Danièle</creatorcontrib><creatorcontrib>Andrades, José A</creatorcontrib><creatorcontrib>Becerra, José</creatorcontrib><creatorcontrib>Rubio, Nuria</creatorcontrib><creatorcontrib>Blanco, Jerónimo</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Biotechnology Research Abstracts</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>MEDLINE - Academic</collection><jtitle>Biomaterials</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Vilalta, Marta</au><au>Jorgensen, Christian</au><au>Dégano, Irene R</au><au>Chernajovsky, Yuti</au><au>Gould, David</au><au>Noël, Danièle</au><au>Andrades, José A</au><au>Becerra, José</au><au>Rubio, Nuria</au><au>Blanco, Jerónimo</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Dual luciferase labelling for non-invasive bioluminescence imaging of mesenchymal stromal cell chondrogenic differentiation in demineralized bone matrix scaffolds</atitle><jtitle>Biomaterials</jtitle><addtitle>Biomaterials</addtitle><date>2009-10-01</date><risdate>2009</risdate><volume>30</volume><issue>28</issue><spage>4986</spage><epage>4995</epage><pages>4986-4995</pages><issn>0142-9612</issn><eissn>1878-5905</eissn><abstract>Abstract Non-invasive bioluminescence imaging (BLI) to monitor changes in gene expression of cells implanted in live animals should facilitate the development of biomaterial scaffolds for tissue regeneration. We show that, in vitro, induction of chondrogenic differentiation in mouse bone marrow stromal cell line (CL1) and human adipose tissue derived mesenchymal stromal cells (hAMSCs), permanently transduced with a procollagen II (COL2A1) promoter driving a firefly luciferase gene reporter (PLuc) (COL2A1p·PLuc), induces PLuc expression in correlation with increases in COL2A1 and Sox9 mRNA expression and acquisition of chondrocytic phenotype. To be able to simultaneously monitor in vivo cell differentiation and proliferation, COL2A1p·PLuc labelled cells were also genetically labelled with a renilla luciferase (RLuc) gene driven by a constitutively active cytomegalovirus promoter, and then seeded in demineralized bone matrix (DBM) subcutaneously implanted in SCID mice. Non-invasive BLI monitoring of the implanted mice showed that the PLuc/RLuc ratio reports on gene expression changes indicative of cell differentiation. Large (CL1) and moderated (hAMSCs) changes in the PLuc/RLuc ratio over a 6 week period, revealed different patterns of in vivo chondrogenic differentiation for the CL1 cell line and primary MSCs, in agreement with in vitro published data and our results from histological analysis of DBM sections. This double bioluminescence labelling strategy together with BLI imaging to analyze behaviour of cells implanted in live animals should facilitate the development of progenitor cell/scaffold combinations for tissue repair.</abstract><cop>Netherlands</cop><pub>Elsevier Ltd</pub><pmid>19539363</pmid><doi>10.1016/j.biomaterials.2009.05.056</doi><tpages>10</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0142-9612
ispartof Biomaterials, 2009-10, Vol.30 (28), p.4986-4995
issn 0142-9612
1878-5905
language eng
recordid cdi_proquest_miscellaneous_67552436
source ScienceDirect Freedom Collection 2022-2024
subjects Adipose Tissue - cytology
Advanced Basic Science
Animals
Bioluminescence imaging (BLI)
Bone Marrow Cells - cytology
Cell Differentiation
Cell Line
Cell Proliferation
Chondrocytes - cytology
Collagen type II (COL2A1)
Collagen Type II - genetics
Collagen Type II - metabolism
Cytomegalovirus
Demineralized bone matrix (DBM)
Dentistry
Diagnostic Imaging - methods
Gene Expression Regulation
Genes, Reporter
Human adipose tissue derived mesenchymal stromal cells (hAMSCs)
Humans
Luciferases, Firefly - analysis
Luciferases, Firefly - genetics
Luciferases, Firefly - metabolism
Luminescent Measurements - methods
Mesenchymal Stem Cell Transplantation
Mesenchymal Stromal Cells - cytology
Mice
Mice, SCID
Murine cell line (CL1)
Osteogenesis
Renilla
Stromal Cells - cytology
Tissue Scaffolds
Transduction, Genetic
title Dual luciferase labelling for non-invasive bioluminescence imaging of mesenchymal stromal cell chondrogenic differentiation in demineralized bone matrix scaffolds
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-28T09%3A29%3A05IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Dual%20luciferase%20labelling%20for%20non-invasive%20bioluminescence%20imaging%20of%20mesenchymal%20stromal%20cell%20chondrogenic%20differentiation%20in%20demineralized%20bone%20matrix%20scaffolds&rft.jtitle=Biomaterials&rft.au=Vilalta,%20Marta&rft.date=2009-10-01&rft.volume=30&rft.issue=28&rft.spage=4986&rft.epage=4995&rft.pages=4986-4995&rft.issn=0142-9612&rft.eissn=1878-5905&rft_id=info:doi/10.1016/j.biomaterials.2009.05.056&rft_dat=%3Cproquest_cross%3E20695196%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c495t-6ef5d467bc01ca0fa52d5025d91045a18d5d12c98aeb4725e47052606e279c463%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=20695196&rft_id=info:pmid/19539363&rfr_iscdi=true