Loading…
Dual luciferase labelling for non-invasive bioluminescence imaging of mesenchymal stromal cell chondrogenic differentiation in demineralized bone matrix scaffolds
Abstract Non-invasive bioluminescence imaging (BLI) to monitor changes in gene expression of cells implanted in live animals should facilitate the development of biomaterial scaffolds for tissue regeneration. We show that, in vitro, induction of chondrogenic differentiation in mouse bone marrow stro...
Saved in:
Published in: | Biomaterials 2009-10, Vol.30 (28), p.4986-4995 |
---|---|
Main Authors: | , , , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c495t-6ef5d467bc01ca0fa52d5025d91045a18d5d12c98aeb4725e47052606e279c463 |
---|---|
cites | cdi_FETCH-LOGICAL-c495t-6ef5d467bc01ca0fa52d5025d91045a18d5d12c98aeb4725e47052606e279c463 |
container_end_page | 4995 |
container_issue | 28 |
container_start_page | 4986 |
container_title | Biomaterials |
container_volume | 30 |
creator | Vilalta, Marta Jorgensen, Christian Dégano, Irene R Chernajovsky, Yuti Gould, David Noël, Danièle Andrades, José A Becerra, José Rubio, Nuria Blanco, Jerónimo |
description | Abstract Non-invasive bioluminescence imaging (BLI) to monitor changes in gene expression of cells implanted in live animals should facilitate the development of biomaterial scaffolds for tissue regeneration. We show that, in vitro, induction of chondrogenic differentiation in mouse bone marrow stromal cell line (CL1) and human adipose tissue derived mesenchymal stromal cells (hAMSCs), permanently transduced with a procollagen II (COL2A1) promoter driving a firefly luciferase gene reporter (PLuc) (COL2A1p·PLuc), induces PLuc expression in correlation with increases in COL2A1 and Sox9 mRNA expression and acquisition of chondrocytic phenotype. To be able to simultaneously monitor in vivo cell differentiation and proliferation, COL2A1p·PLuc labelled cells were also genetically labelled with a renilla luciferase (RLuc) gene driven by a constitutively active cytomegalovirus promoter, and then seeded in demineralized bone matrix (DBM) subcutaneously implanted in SCID mice. Non-invasive BLI monitoring of the implanted mice showed that the PLuc/RLuc ratio reports on gene expression changes indicative of cell differentiation. Large (CL1) and moderated (hAMSCs) changes in the PLuc/RLuc ratio over a 6 week period, revealed different patterns of in vivo chondrogenic differentiation for the CL1 cell line and primary MSCs, in agreement with in vitro published data and our results from histological analysis of DBM sections. This double bioluminescence labelling strategy together with BLI imaging to analyze behaviour of cells implanted in live animals should facilitate the development of progenitor cell/scaffold combinations for tissue repair. |
doi_str_mv | 10.1016/j.biomaterials.2009.05.056 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_67552436</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>1_s2_0_S0142961209005729</els_id><sourcerecordid>20695196</sourcerecordid><originalsourceid>FETCH-LOGICAL-c495t-6ef5d467bc01ca0fa52d5025d91045a18d5d12c98aeb4725e47052606e279c463</originalsourceid><addsrcrecordid>eNqNUsGKFDEQbURxZ1d_QYIHbz1W0p30xIMgu64KCx7Uc0gn1bMZu5M16R52_By_1IQZULyspKCo8Oo9ql5V1UsKawpUvN6texcmPWN0ekxrBiDXwHOIR9WKbrpNzSXwx9UKaMtqKSg7q85T2kGuoWVPqzMqeSMb0ayqX1eLHsm4GDdg1AnJqHscR-e3ZAiR-OBr5_c6uT2SrDouk_OYDHqDxE16W4BhIBOm_HV7mDJZmmMo2WQeYm6DtzFs0TtDrBuyCvrZ6dkFT5wnFgth1KP7iZb0wSPJk0V3T5LRwxBGm55VT4Y8Jz4_5Yvq2_X7r5cf65vPHz5dvrupTSv5XAscuG1F1xugRsOgObMcGLeSQss13VhuKTNyo7FvO8ax7YAzAQJZJ00rmovq1ZH3LoYfC6ZZTS6VIbTHsCQlOs5Z2zwMbFre5ScfBDIQklNZGN8cgSaGlCIO6i7m7caDoqCK52qn_vZcFc8V8Byl-cVJZekntH9aTyZnwNURgHl7e4dRJeOKg9ZFNLOywf2fztt_aEy-E2f0-B0PmHZhib70UJWYAvWlXF85PpAAvGOy-Q2Ja92a</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>20695196</pqid></control><display><type>article</type><title>Dual luciferase labelling for non-invasive bioluminescence imaging of mesenchymal stromal cell chondrogenic differentiation in demineralized bone matrix scaffolds</title><source>ScienceDirect Freedom Collection 2022-2024</source><creator>Vilalta, Marta ; Jorgensen, Christian ; Dégano, Irene R ; Chernajovsky, Yuti ; Gould, David ; Noël, Danièle ; Andrades, José A ; Becerra, José ; Rubio, Nuria ; Blanco, Jerónimo</creator><creatorcontrib>Vilalta, Marta ; Jorgensen, Christian ; Dégano, Irene R ; Chernajovsky, Yuti ; Gould, David ; Noël, Danièle ; Andrades, José A ; Becerra, José ; Rubio, Nuria ; Blanco, Jerónimo</creatorcontrib><description>Abstract Non-invasive bioluminescence imaging (BLI) to monitor changes in gene expression of cells implanted in live animals should facilitate the development of biomaterial scaffolds for tissue regeneration. We show that, in vitro, induction of chondrogenic differentiation in mouse bone marrow stromal cell line (CL1) and human adipose tissue derived mesenchymal stromal cells (hAMSCs), permanently transduced with a procollagen II (COL2A1) promoter driving a firefly luciferase gene reporter (PLuc) (COL2A1p·PLuc), induces PLuc expression in correlation with increases in COL2A1 and Sox9 mRNA expression and acquisition of chondrocytic phenotype. To be able to simultaneously monitor in vivo cell differentiation and proliferation, COL2A1p·PLuc labelled cells were also genetically labelled with a renilla luciferase (RLuc) gene driven by a constitutively active cytomegalovirus promoter, and then seeded in demineralized bone matrix (DBM) subcutaneously implanted in SCID mice. Non-invasive BLI monitoring of the implanted mice showed that the PLuc/RLuc ratio reports on gene expression changes indicative of cell differentiation. Large (CL1) and moderated (hAMSCs) changes in the PLuc/RLuc ratio over a 6 week period, revealed different patterns of in vivo chondrogenic differentiation for the CL1 cell line and primary MSCs, in agreement with in vitro published data and our results from histological analysis of DBM sections. This double bioluminescence labelling strategy together with BLI imaging to analyze behaviour of cells implanted in live animals should facilitate the development of progenitor cell/scaffold combinations for tissue repair.</description><identifier>ISSN: 0142-9612</identifier><identifier>EISSN: 1878-5905</identifier><identifier>DOI: 10.1016/j.biomaterials.2009.05.056</identifier><identifier>PMID: 19539363</identifier><language>eng</language><publisher>Netherlands: Elsevier Ltd</publisher><subject>Adipose Tissue - cytology ; Advanced Basic Science ; Animals ; Bioluminescence imaging (BLI) ; Bone Marrow Cells - cytology ; Cell Differentiation ; Cell Line ; Cell Proliferation ; Chondrocytes - cytology ; Collagen type II (COL2A1) ; Collagen Type II - genetics ; Collagen Type II - metabolism ; Cytomegalovirus ; Demineralized bone matrix (DBM) ; Dentistry ; Diagnostic Imaging - methods ; Gene Expression Regulation ; Genes, Reporter ; Human adipose tissue derived mesenchymal stromal cells (hAMSCs) ; Humans ; Luciferases, Firefly - analysis ; Luciferases, Firefly - genetics ; Luciferases, Firefly - metabolism ; Luminescent Measurements - methods ; Mesenchymal Stem Cell Transplantation ; Mesenchymal Stromal Cells - cytology ; Mice ; Mice, SCID ; Murine cell line (CL1) ; Osteogenesis ; Renilla ; Stromal Cells - cytology ; Tissue Scaffolds ; Transduction, Genetic</subject><ispartof>Biomaterials, 2009-10, Vol.30 (28), p.4986-4995</ispartof><rights>Elsevier Ltd</rights><rights>2009 Elsevier Ltd</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c495t-6ef5d467bc01ca0fa52d5025d91045a18d5d12c98aeb4725e47052606e279c463</citedby><cites>FETCH-LOGICAL-c495t-6ef5d467bc01ca0fa52d5025d91045a18d5d12c98aeb4725e47052606e279c463</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/19539363$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Vilalta, Marta</creatorcontrib><creatorcontrib>Jorgensen, Christian</creatorcontrib><creatorcontrib>Dégano, Irene R</creatorcontrib><creatorcontrib>Chernajovsky, Yuti</creatorcontrib><creatorcontrib>Gould, David</creatorcontrib><creatorcontrib>Noël, Danièle</creatorcontrib><creatorcontrib>Andrades, José A</creatorcontrib><creatorcontrib>Becerra, José</creatorcontrib><creatorcontrib>Rubio, Nuria</creatorcontrib><creatorcontrib>Blanco, Jerónimo</creatorcontrib><title>Dual luciferase labelling for non-invasive bioluminescence imaging of mesenchymal stromal cell chondrogenic differentiation in demineralized bone matrix scaffolds</title><title>Biomaterials</title><addtitle>Biomaterials</addtitle><description>Abstract Non-invasive bioluminescence imaging (BLI) to monitor changes in gene expression of cells implanted in live animals should facilitate the development of biomaterial scaffolds for tissue regeneration. We show that, in vitro, induction of chondrogenic differentiation in mouse bone marrow stromal cell line (CL1) and human adipose tissue derived mesenchymal stromal cells (hAMSCs), permanently transduced with a procollagen II (COL2A1) promoter driving a firefly luciferase gene reporter (PLuc) (COL2A1p·PLuc), induces PLuc expression in correlation with increases in COL2A1 and Sox9 mRNA expression and acquisition of chondrocytic phenotype. To be able to simultaneously monitor in vivo cell differentiation and proliferation, COL2A1p·PLuc labelled cells were also genetically labelled with a renilla luciferase (RLuc) gene driven by a constitutively active cytomegalovirus promoter, and then seeded in demineralized bone matrix (DBM) subcutaneously implanted in SCID mice. Non-invasive BLI monitoring of the implanted mice showed that the PLuc/RLuc ratio reports on gene expression changes indicative of cell differentiation. Large (CL1) and moderated (hAMSCs) changes in the PLuc/RLuc ratio over a 6 week period, revealed different patterns of in vivo chondrogenic differentiation for the CL1 cell line and primary MSCs, in agreement with in vitro published data and our results from histological analysis of DBM sections. This double bioluminescence labelling strategy together with BLI imaging to analyze behaviour of cells implanted in live animals should facilitate the development of progenitor cell/scaffold combinations for tissue repair.</description><subject>Adipose Tissue - cytology</subject><subject>Advanced Basic Science</subject><subject>Animals</subject><subject>Bioluminescence imaging (BLI)</subject><subject>Bone Marrow Cells - cytology</subject><subject>Cell Differentiation</subject><subject>Cell Line</subject><subject>Cell Proliferation</subject><subject>Chondrocytes - cytology</subject><subject>Collagen type II (COL2A1)</subject><subject>Collagen Type II - genetics</subject><subject>Collagen Type II - metabolism</subject><subject>Cytomegalovirus</subject><subject>Demineralized bone matrix (DBM)</subject><subject>Dentistry</subject><subject>Diagnostic Imaging - methods</subject><subject>Gene Expression Regulation</subject><subject>Genes, Reporter</subject><subject>Human adipose tissue derived mesenchymal stromal cells (hAMSCs)</subject><subject>Humans</subject><subject>Luciferases, Firefly - analysis</subject><subject>Luciferases, Firefly - genetics</subject><subject>Luciferases, Firefly - metabolism</subject><subject>Luminescent Measurements - methods</subject><subject>Mesenchymal Stem Cell Transplantation</subject><subject>Mesenchymal Stromal Cells - cytology</subject><subject>Mice</subject><subject>Mice, SCID</subject><subject>Murine cell line (CL1)</subject><subject>Osteogenesis</subject><subject>Renilla</subject><subject>Stromal Cells - cytology</subject><subject>Tissue Scaffolds</subject><subject>Transduction, Genetic</subject><issn>0142-9612</issn><issn>1878-5905</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2009</creationdate><recordtype>article</recordtype><recordid>eNqNUsGKFDEQbURxZ1d_QYIHbz1W0p30xIMgu64KCx7Uc0gn1bMZu5M16R52_By_1IQZULyspKCo8Oo9ql5V1UsKawpUvN6texcmPWN0ekxrBiDXwHOIR9WKbrpNzSXwx9UKaMtqKSg7q85T2kGuoWVPqzMqeSMb0ayqX1eLHsm4GDdg1AnJqHscR-e3ZAiR-OBr5_c6uT2SrDouk_OYDHqDxE16W4BhIBOm_HV7mDJZmmMo2WQeYm6DtzFs0TtDrBuyCvrZ6dkFT5wnFgth1KP7iZb0wSPJk0V3T5LRwxBGm55VT4Y8Jz4_5Yvq2_X7r5cf65vPHz5dvrupTSv5XAscuG1F1xugRsOgObMcGLeSQss13VhuKTNyo7FvO8ax7YAzAQJZJ00rmovq1ZH3LoYfC6ZZTS6VIbTHsCQlOs5Z2zwMbFre5ScfBDIQklNZGN8cgSaGlCIO6i7m7caDoqCK52qn_vZcFc8V8Byl-cVJZekntH9aTyZnwNURgHl7e4dRJeOKg9ZFNLOywf2fztt_aEy-E2f0-B0PmHZhib70UJWYAvWlXF85PpAAvGOy-Q2Ja92a</recordid><startdate>20091001</startdate><enddate>20091001</enddate><creator>Vilalta, Marta</creator><creator>Jorgensen, Christian</creator><creator>Dégano, Irene R</creator><creator>Chernajovsky, Yuti</creator><creator>Gould, David</creator><creator>Noël, Danièle</creator><creator>Andrades, José A</creator><creator>Becerra, José</creator><creator>Rubio, Nuria</creator><creator>Blanco, Jerónimo</creator><general>Elsevier Ltd</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QO</scope><scope>7QP</scope><scope>7U9</scope><scope>8FD</scope><scope>FR3</scope><scope>H94</scope><scope>P64</scope><scope>7SR</scope><scope>7TB</scope><scope>7U5</scope><scope>8BQ</scope><scope>F28</scope><scope>JG9</scope><scope>L7M</scope><scope>7X8</scope></search><sort><creationdate>20091001</creationdate><title>Dual luciferase labelling for non-invasive bioluminescence imaging of mesenchymal stromal cell chondrogenic differentiation in demineralized bone matrix scaffolds</title><author>Vilalta, Marta ; Jorgensen, Christian ; Dégano, Irene R ; Chernajovsky, Yuti ; Gould, David ; Noël, Danièle ; Andrades, José A ; Becerra, José ; Rubio, Nuria ; Blanco, Jerónimo</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c495t-6ef5d467bc01ca0fa52d5025d91045a18d5d12c98aeb4725e47052606e279c463</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2009</creationdate><topic>Adipose Tissue - cytology</topic><topic>Advanced Basic Science</topic><topic>Animals</topic><topic>Bioluminescence imaging (BLI)</topic><topic>Bone Marrow Cells - cytology</topic><topic>Cell Differentiation</topic><topic>Cell Line</topic><topic>Cell Proliferation</topic><topic>Chondrocytes - cytology</topic><topic>Collagen type II (COL2A1)</topic><topic>Collagen Type II - genetics</topic><topic>Collagen Type II - metabolism</topic><topic>Cytomegalovirus</topic><topic>Demineralized bone matrix (DBM)</topic><topic>Dentistry</topic><topic>Diagnostic Imaging - methods</topic><topic>Gene Expression Regulation</topic><topic>Genes, Reporter</topic><topic>Human adipose tissue derived mesenchymal stromal cells (hAMSCs)</topic><topic>Humans</topic><topic>Luciferases, Firefly - analysis</topic><topic>Luciferases, Firefly - genetics</topic><topic>Luciferases, Firefly - metabolism</topic><topic>Luminescent Measurements - methods</topic><topic>Mesenchymal Stem Cell Transplantation</topic><topic>Mesenchymal Stromal Cells - cytology</topic><topic>Mice</topic><topic>Mice, SCID</topic><topic>Murine cell line (CL1)</topic><topic>Osteogenesis</topic><topic>Renilla</topic><topic>Stromal Cells - cytology</topic><topic>Tissue Scaffolds</topic><topic>Transduction, Genetic</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Vilalta, Marta</creatorcontrib><creatorcontrib>Jorgensen, Christian</creatorcontrib><creatorcontrib>Dégano, Irene R</creatorcontrib><creatorcontrib>Chernajovsky, Yuti</creatorcontrib><creatorcontrib>Gould, David</creatorcontrib><creatorcontrib>Noël, Danièle</creatorcontrib><creatorcontrib>Andrades, José A</creatorcontrib><creatorcontrib>Becerra, José</creatorcontrib><creatorcontrib>Rubio, Nuria</creatorcontrib><creatorcontrib>Blanco, Jerónimo</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Biotechnology Research Abstracts</collection><collection>Calcium & Calcified Tissue Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>ANTE: Abstracts in New Technology & Engineering</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>MEDLINE - Academic</collection><jtitle>Biomaterials</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Vilalta, Marta</au><au>Jorgensen, Christian</au><au>Dégano, Irene R</au><au>Chernajovsky, Yuti</au><au>Gould, David</au><au>Noël, Danièle</au><au>Andrades, José A</au><au>Becerra, José</au><au>Rubio, Nuria</au><au>Blanco, Jerónimo</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Dual luciferase labelling for non-invasive bioluminescence imaging of mesenchymal stromal cell chondrogenic differentiation in demineralized bone matrix scaffolds</atitle><jtitle>Biomaterials</jtitle><addtitle>Biomaterials</addtitle><date>2009-10-01</date><risdate>2009</risdate><volume>30</volume><issue>28</issue><spage>4986</spage><epage>4995</epage><pages>4986-4995</pages><issn>0142-9612</issn><eissn>1878-5905</eissn><abstract>Abstract Non-invasive bioluminescence imaging (BLI) to monitor changes in gene expression of cells implanted in live animals should facilitate the development of biomaterial scaffolds for tissue regeneration. We show that, in vitro, induction of chondrogenic differentiation in mouse bone marrow stromal cell line (CL1) and human adipose tissue derived mesenchymal stromal cells (hAMSCs), permanently transduced with a procollagen II (COL2A1) promoter driving a firefly luciferase gene reporter (PLuc) (COL2A1p·PLuc), induces PLuc expression in correlation with increases in COL2A1 and Sox9 mRNA expression and acquisition of chondrocytic phenotype. To be able to simultaneously monitor in vivo cell differentiation and proliferation, COL2A1p·PLuc labelled cells were also genetically labelled with a renilla luciferase (RLuc) gene driven by a constitutively active cytomegalovirus promoter, and then seeded in demineralized bone matrix (DBM) subcutaneously implanted in SCID mice. Non-invasive BLI monitoring of the implanted mice showed that the PLuc/RLuc ratio reports on gene expression changes indicative of cell differentiation. Large (CL1) and moderated (hAMSCs) changes in the PLuc/RLuc ratio over a 6 week period, revealed different patterns of in vivo chondrogenic differentiation for the CL1 cell line and primary MSCs, in agreement with in vitro published data and our results from histological analysis of DBM sections. This double bioluminescence labelling strategy together with BLI imaging to analyze behaviour of cells implanted in live animals should facilitate the development of progenitor cell/scaffold combinations for tissue repair.</abstract><cop>Netherlands</cop><pub>Elsevier Ltd</pub><pmid>19539363</pmid><doi>10.1016/j.biomaterials.2009.05.056</doi><tpages>10</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0142-9612 |
ispartof | Biomaterials, 2009-10, Vol.30 (28), p.4986-4995 |
issn | 0142-9612 1878-5905 |
language | eng |
recordid | cdi_proquest_miscellaneous_67552436 |
source | ScienceDirect Freedom Collection 2022-2024 |
subjects | Adipose Tissue - cytology Advanced Basic Science Animals Bioluminescence imaging (BLI) Bone Marrow Cells - cytology Cell Differentiation Cell Line Cell Proliferation Chondrocytes - cytology Collagen type II (COL2A1) Collagen Type II - genetics Collagen Type II - metabolism Cytomegalovirus Demineralized bone matrix (DBM) Dentistry Diagnostic Imaging - methods Gene Expression Regulation Genes, Reporter Human adipose tissue derived mesenchymal stromal cells (hAMSCs) Humans Luciferases, Firefly - analysis Luciferases, Firefly - genetics Luciferases, Firefly - metabolism Luminescent Measurements - methods Mesenchymal Stem Cell Transplantation Mesenchymal Stromal Cells - cytology Mice Mice, SCID Murine cell line (CL1) Osteogenesis Renilla Stromal Cells - cytology Tissue Scaffolds Transduction, Genetic |
title | Dual luciferase labelling for non-invasive bioluminescence imaging of mesenchymal stromal cell chondrogenic differentiation in demineralized bone matrix scaffolds |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-28T09%3A29%3A05IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Dual%20luciferase%20labelling%20for%20non-invasive%20bioluminescence%20imaging%20of%20mesenchymal%20stromal%20cell%20chondrogenic%20differentiation%20in%20demineralized%20bone%20matrix%20scaffolds&rft.jtitle=Biomaterials&rft.au=Vilalta,%20Marta&rft.date=2009-10-01&rft.volume=30&rft.issue=28&rft.spage=4986&rft.epage=4995&rft.pages=4986-4995&rft.issn=0142-9612&rft.eissn=1878-5905&rft_id=info:doi/10.1016/j.biomaterials.2009.05.056&rft_dat=%3Cproquest_cross%3E20695196%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c495t-6ef5d467bc01ca0fa52d5025d91045a18d5d12c98aeb4725e47052606e279c463%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=20695196&rft_id=info:pmid/19539363&rfr_iscdi=true |