Loading…
Pattern recognition with generalized centroids and subcentroids
We propose a class of generalized moment functions (GMFs) that can be used to determine a set of geometric points, namely, generalized centroids (G centroids), within an object. Based on a linear GMF, a mass centroid and its subcentroids can be defined and extracted, which provide information on the...
Saved in:
Published in: | Applied optics (2004) 2005-03, Vol.44 (8), p.1372-1380 |
---|---|
Main Authors: | , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c289t-f57f07e607456b0ab891aad045f66012b75c0c295bf7f1b42bdecc3bbf1c78bb3 |
---|---|
cites | |
container_end_page | 1380 |
container_issue | 8 |
container_start_page | 1372 |
container_title | Applied optics (2004) |
container_volume | 44 |
creator | Chang, Shoude Grover, Chander P |
description | We propose a class of generalized moment functions (GMFs) that can be used to determine a set of geometric points, namely, generalized centroids (G centroids), within an object. Based on a linear GMF, a mass centroid and its subcentroids can be defined and extracted, which provide information on the location and orientation of an object. Similar to traditional moment functions, GMFs can also be used to describe the global shape of an object, including symmetry and fullness. However, GMFs, along with G centroids and subcentroids, can further serve to construct a feature vector of an object, which is critical for image registration and invariant pattern recognition. One can extract more distinguishing features from the same object by changing the combination of GMFs. We present results that show simulations of pattern recognition from uniform backgrounds. |
doi_str_mv | 10.1364/AO.44.001372 |
format | article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_proquest_miscellaneous_67557223</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>67557223</sourcerecordid><originalsourceid>FETCH-LOGICAL-c289t-f57f07e607456b0ab891aad045f66012b75c0c295bf7f1b42bdecc3bbf1c78bb3</originalsourceid><addsrcrecordid>eNo9j81LwzAchnNQ3JzePEtP3lrznfYkYzgVBvOg4K0k6S8z0qYzSRH96xWcnh54eXjhQeiC4Iowya-X24rzCmPCFD1CcyJEUxJav8zQaUpvGDPBG3WCZkSoRlLG5-jmUecMMRQR7LgLPvsxFB8-vxY7CBB177-gKyyEHEffpUKHrkiT-R_O0LHTfYLzAxfoeX37tLovN9u7h9VyU1paN7l0QjmsQGLFhTRYm7ohWneYCyclJtQoYbGljTBOOWI4NR1Yy4xxxKraGLZAV7-_-zi-T5ByO_hkoe91gHFKrVRCKErZj3h5ECczQNfuox90_Gz_ktk3AyVXFQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>67557223</pqid></control><display><type>article</type><title>Pattern recognition with generalized centroids and subcentroids</title><source>Optica Publishing Group Journals</source><creator>Chang, Shoude ; Grover, Chander P</creator><creatorcontrib>Chang, Shoude ; Grover, Chander P</creatorcontrib><description>We propose a class of generalized moment functions (GMFs) that can be used to determine a set of geometric points, namely, generalized centroids (G centroids), within an object. Based on a linear GMF, a mass centroid and its subcentroids can be defined and extracted, which provide information on the location and orientation of an object. Similar to traditional moment functions, GMFs can also be used to describe the global shape of an object, including symmetry and fullness. However, GMFs, along with G centroids and subcentroids, can further serve to construct a feature vector of an object, which is critical for image registration and invariant pattern recognition. One can extract more distinguishing features from the same object by changing the combination of GMFs. We present results that show simulations of pattern recognition from uniform backgrounds.</description><identifier>ISSN: 1559-128X</identifier><identifier>DOI: 10.1364/AO.44.001372</identifier><identifier>PMID: 15796234</identifier><language>eng</language><publisher>United States</publisher><subject>Algorithms ; Artificial Intelligence ; Image Enhancement - methods ; Image Interpretation, Computer-Assisted - methods ; Imaging, Three-Dimensional - methods ; Information Storage and Retrieval - methods ; Numerical Analysis, Computer-Assisted ; Pattern Recognition, Automated - methods</subject><ispartof>Applied optics (2004), 2005-03, Vol.44 (8), p.1372-1380</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c289t-f57f07e607456b0ab891aad045f66012b75c0c295bf7f1b42bdecc3bbf1c78bb3</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/15796234$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Chang, Shoude</creatorcontrib><creatorcontrib>Grover, Chander P</creatorcontrib><title>Pattern recognition with generalized centroids and subcentroids</title><title>Applied optics (2004)</title><addtitle>Appl Opt</addtitle><description>We propose a class of generalized moment functions (GMFs) that can be used to determine a set of geometric points, namely, generalized centroids (G centroids), within an object. Based on a linear GMF, a mass centroid and its subcentroids can be defined and extracted, which provide information on the location and orientation of an object. Similar to traditional moment functions, GMFs can also be used to describe the global shape of an object, including symmetry and fullness. However, GMFs, along with G centroids and subcentroids, can further serve to construct a feature vector of an object, which is critical for image registration and invariant pattern recognition. One can extract more distinguishing features from the same object by changing the combination of GMFs. We present results that show simulations of pattern recognition from uniform backgrounds.</description><subject>Algorithms</subject><subject>Artificial Intelligence</subject><subject>Image Enhancement - methods</subject><subject>Image Interpretation, Computer-Assisted - methods</subject><subject>Imaging, Three-Dimensional - methods</subject><subject>Information Storage and Retrieval - methods</subject><subject>Numerical Analysis, Computer-Assisted</subject><subject>Pattern Recognition, Automated - methods</subject><issn>1559-128X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2005</creationdate><recordtype>article</recordtype><recordid>eNo9j81LwzAchnNQ3JzePEtP3lrznfYkYzgVBvOg4K0k6S8z0qYzSRH96xWcnh54eXjhQeiC4Iowya-X24rzCmPCFD1CcyJEUxJav8zQaUpvGDPBG3WCZkSoRlLG5-jmUecMMRQR7LgLPvsxFB8-vxY7CBB177-gKyyEHEffpUKHrkiT-R_O0LHTfYLzAxfoeX37tLovN9u7h9VyU1paN7l0QjmsQGLFhTRYm7ohWneYCyclJtQoYbGljTBOOWI4NR1Yy4xxxKraGLZAV7-_-zi-T5ByO_hkoe91gHFKrVRCKErZj3h5ECczQNfuox90_Gz_ktk3AyVXFQ</recordid><startdate>20050310</startdate><enddate>20050310</enddate><creator>Chang, Shoude</creator><creator>Grover, Chander P</creator><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>7X8</scope></search><sort><creationdate>20050310</creationdate><title>Pattern recognition with generalized centroids and subcentroids</title><author>Chang, Shoude ; Grover, Chander P</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c289t-f57f07e607456b0ab891aad045f66012b75c0c295bf7f1b42bdecc3bbf1c78bb3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2005</creationdate><topic>Algorithms</topic><topic>Artificial Intelligence</topic><topic>Image Enhancement - methods</topic><topic>Image Interpretation, Computer-Assisted - methods</topic><topic>Imaging, Three-Dimensional - methods</topic><topic>Information Storage and Retrieval - methods</topic><topic>Numerical Analysis, Computer-Assisted</topic><topic>Pattern Recognition, Automated - methods</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Chang, Shoude</creatorcontrib><creatorcontrib>Grover, Chander P</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>MEDLINE - Academic</collection><jtitle>Applied optics (2004)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Chang, Shoude</au><au>Grover, Chander P</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Pattern recognition with generalized centroids and subcentroids</atitle><jtitle>Applied optics (2004)</jtitle><addtitle>Appl Opt</addtitle><date>2005-03-10</date><risdate>2005</risdate><volume>44</volume><issue>8</issue><spage>1372</spage><epage>1380</epage><pages>1372-1380</pages><issn>1559-128X</issn><abstract>We propose a class of generalized moment functions (GMFs) that can be used to determine a set of geometric points, namely, generalized centroids (G centroids), within an object. Based on a linear GMF, a mass centroid and its subcentroids can be defined and extracted, which provide information on the location and orientation of an object. Similar to traditional moment functions, GMFs can also be used to describe the global shape of an object, including symmetry and fullness. However, GMFs, along with G centroids and subcentroids, can further serve to construct a feature vector of an object, which is critical for image registration and invariant pattern recognition. One can extract more distinguishing features from the same object by changing the combination of GMFs. We present results that show simulations of pattern recognition from uniform backgrounds.</abstract><cop>United States</cop><pmid>15796234</pmid><doi>10.1364/AO.44.001372</doi><tpages>9</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1559-128X |
ispartof | Applied optics (2004), 2005-03, Vol.44 (8), p.1372-1380 |
issn | 1559-128X |
language | eng |
recordid | cdi_proquest_miscellaneous_67557223 |
source | Optica Publishing Group Journals |
subjects | Algorithms Artificial Intelligence Image Enhancement - methods Image Interpretation, Computer-Assisted - methods Imaging, Three-Dimensional - methods Information Storage and Retrieval - methods Numerical Analysis, Computer-Assisted Pattern Recognition, Automated - methods |
title | Pattern recognition with generalized centroids and subcentroids |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-25T21%3A49%3A36IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Pattern%20recognition%20with%20generalized%20centroids%20and%20subcentroids&rft.jtitle=Applied%20optics%20(2004)&rft.au=Chang,%20Shoude&rft.date=2005-03-10&rft.volume=44&rft.issue=8&rft.spage=1372&rft.epage=1380&rft.pages=1372-1380&rft.issn=1559-128X&rft_id=info:doi/10.1364/AO.44.001372&rft_dat=%3Cproquest_pubme%3E67557223%3C/proquest_pubme%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c289t-f57f07e607456b0ab891aad045f66012b75c0c295bf7f1b42bdecc3bbf1c78bb3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=67557223&rft_id=info:pmid/15796234&rfr_iscdi=true |