Loading…

Microelectrophoresis in a laser trap: A platform for measuring electrokinetic interactions and flow properties within microstructures

We describe a combination of microelectrophoresis and laser-trap methodology to accurately measure the electric force acting on a charged microsphere which is trapped in an optical tweezer. This field/trap apparatus allows measuring of the zeta potential with submillivolt accuracy and high temporal...

Full description

Saved in:
Bibliographic Details
Published in:Review of scientific instruments 2009-07, Vol.80 (7), p.073704-073704-9
Main Authors: Kahl, V., Gansen, A., Galneder, R., Rädler, J. O.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c338t-59e6ed0e139f859a776907a4f1b17c25f7829f32734a796d0db05895e4dda6683
cites cdi_FETCH-LOGICAL-c338t-59e6ed0e139f859a776907a4f1b17c25f7829f32734a796d0db05895e4dda6683
container_end_page 073704-9
container_issue 7
container_start_page 073704
container_title Review of scientific instruments
container_volume 80
creator Kahl, V.
Gansen, A.
Galneder, R.
Rädler, J. O.
description We describe a combination of microelectrophoresis and laser-trap methodology to accurately measure the electric force acting on a charged microsphere which is trapped in an optical tweezer. This field/trap apparatus allows measuring of the zeta potential with submillivolt accuracy and high temporal resolution. The combination with stop-flow techniques in principle provides a mean to observe adsorption or enzyme kinetics with single molecule sensitivity. We show that it is possible to accurately profile the position and frequency dependent hydrodynamic and electro-osmotic flow inside a microchannel structure of dimensions typically used in microfluidic applications without the need of fluorescent markers. We found good agreement to the theory of electrophoretic flow when retardation effects for rapidly alternating electric fields are included.
doi_str_mv 10.1063/1.3169511
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_67559981</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>67559981</sourcerecordid><originalsourceid>FETCH-LOGICAL-c338t-59e6ed0e139f859a776907a4f1b17c25f7829f32734a796d0db05895e4dda6683</originalsourceid><addsrcrecordid>eNp1kU1LAzEQhoMotlYP_gHJSfCwmjSbZONBKMUvqHjR85JmZ210v0yyFH-A_9ssXfCic8hcnnlneILQKSWXlAh2RS8ZFYpTuoemlGQqkWLO9tGUEJYmQqbZBB15_05iRegQTagSnCvOpuj7yRrXQgUmuLbbtA689dg2WONKe3A4ON1d4wXuKh3K1tU4PrgG7Xtnmzc8Tn7YBoI1cTCA0ybYtvFYNwUuq3aLuxgNLljweGvDJqbXw1YfXG9CH1ceo4NSVx5Oxj5Dr3e3L8uHZPV8_7hcrBLDWBYSrkBAQYAyVWZcaSmFIlKnJV1Taea8lNlclWwuWaqlEgUp1oRnikNaFFqIjM3Q-S43XvTZgw95bb2BqtINtL3PhYxaVEYjeLEDhzO9gzLvnK21-8opyQfnOc1H55E9G0P7dQ3FLzlKjsDNDvDGBj24-T_tr-9gP7bXlLk</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>67559981</pqid></control><display><type>article</type><title>Microelectrophoresis in a laser trap: A platform for measuring electrokinetic interactions and flow properties within microstructures</title><source>American Institute of Physics:Jisc Collections:Transitional Journals Agreement 2021-23 (Reading list)</source><source>AIP Journals (American Institute of Physics)</source><creator>Kahl, V. ; Gansen, A. ; Galneder, R. ; Rädler, J. O.</creator><creatorcontrib>Kahl, V. ; Gansen, A. ; Galneder, R. ; Rädler, J. O.</creatorcontrib><description>We describe a combination of microelectrophoresis and laser-trap methodology to accurately measure the electric force acting on a charged microsphere which is trapped in an optical tweezer. This field/trap apparatus allows measuring of the zeta potential with submillivolt accuracy and high temporal resolution. The combination with stop-flow techniques in principle provides a mean to observe adsorption or enzyme kinetics with single molecule sensitivity. We show that it is possible to accurately profile the position and frequency dependent hydrodynamic and electro-osmotic flow inside a microchannel structure of dimensions typically used in microfluidic applications without the need of fluorescent markers. We found good agreement to the theory of electrophoretic flow when retardation effects for rapidly alternating electric fields are included.</description><identifier>ISSN: 0034-6748</identifier><identifier>EISSN: 1089-7623</identifier><identifier>DOI: 10.1063/1.3169511</identifier><identifier>PMID: 19655953</identifier><identifier>CODEN: RSINAK</identifier><language>eng</language><publisher>United States: American Institute of Physics</publisher><subject>Algorithms ; Calibration ; Elasticity ; Electricity ; Electrophoresis - instrumentation ; Kinetics ; Lasers ; Linear Models ; Lipid Bilayers - chemistry ; Microfluidics - instrumentation ; Microspheres ; Microtechnology - instrumentation ; Optics and Photonics - instrumentation ; Osmosis ; Phosphatidylcholines - chemistry ; Silicon Dioxide - chemistry</subject><ispartof>Review of scientific instruments, 2009-07, Vol.80 (7), p.073704-073704-9</ispartof><rights>2009 American Institute of Physics</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c338t-59e6ed0e139f859a776907a4f1b17c25f7829f32734a796d0db05895e4dda6683</citedby><cites>FETCH-LOGICAL-c338t-59e6ed0e139f859a776907a4f1b17c25f7829f32734a796d0db05895e4dda6683</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://pubs.aip.org/rsi/article-lookup/doi/10.1063/1.3169511$$EHTML$$P50$$Gscitation$$H</linktohtml><link.rule.ids>314,780,782,784,795,27924,27925,76383</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/19655953$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Kahl, V.</creatorcontrib><creatorcontrib>Gansen, A.</creatorcontrib><creatorcontrib>Galneder, R.</creatorcontrib><creatorcontrib>Rädler, J. O.</creatorcontrib><title>Microelectrophoresis in a laser trap: A platform for measuring electrokinetic interactions and flow properties within microstructures</title><title>Review of scientific instruments</title><addtitle>Rev Sci Instrum</addtitle><description>We describe a combination of microelectrophoresis and laser-trap methodology to accurately measure the electric force acting on a charged microsphere which is trapped in an optical tweezer. This field/trap apparatus allows measuring of the zeta potential with submillivolt accuracy and high temporal resolution. The combination with stop-flow techniques in principle provides a mean to observe adsorption or enzyme kinetics with single molecule sensitivity. We show that it is possible to accurately profile the position and frequency dependent hydrodynamic and electro-osmotic flow inside a microchannel structure of dimensions typically used in microfluidic applications without the need of fluorescent markers. We found good agreement to the theory of electrophoretic flow when retardation effects for rapidly alternating electric fields are included.</description><subject>Algorithms</subject><subject>Calibration</subject><subject>Elasticity</subject><subject>Electricity</subject><subject>Electrophoresis - instrumentation</subject><subject>Kinetics</subject><subject>Lasers</subject><subject>Linear Models</subject><subject>Lipid Bilayers - chemistry</subject><subject>Microfluidics - instrumentation</subject><subject>Microspheres</subject><subject>Microtechnology - instrumentation</subject><subject>Optics and Photonics - instrumentation</subject><subject>Osmosis</subject><subject>Phosphatidylcholines - chemistry</subject><subject>Silicon Dioxide - chemistry</subject><issn>0034-6748</issn><issn>1089-7623</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2009</creationdate><recordtype>article</recordtype><recordid>eNp1kU1LAzEQhoMotlYP_gHJSfCwmjSbZONBKMUvqHjR85JmZ210v0yyFH-A_9ssXfCic8hcnnlneILQKSWXlAh2RS8ZFYpTuoemlGQqkWLO9tGUEJYmQqbZBB15_05iRegQTagSnCvOpuj7yRrXQgUmuLbbtA689dg2WONKe3A4ON1d4wXuKh3K1tU4PrgG7Xtnmzc8Tn7YBoI1cTCA0ybYtvFYNwUuq3aLuxgNLljweGvDJqbXw1YfXG9CH1ceo4NSVx5Oxj5Dr3e3L8uHZPV8_7hcrBLDWBYSrkBAQYAyVWZcaSmFIlKnJV1Taea8lNlclWwuWaqlEgUp1oRnikNaFFqIjM3Q-S43XvTZgw95bb2BqtINtL3PhYxaVEYjeLEDhzO9gzLvnK21-8opyQfnOc1H55E9G0P7dQ3FLzlKjsDNDvDGBj24-T_tr-9gP7bXlLk</recordid><startdate>20090701</startdate><enddate>20090701</enddate><creator>Kahl, V.</creator><creator>Gansen, A.</creator><creator>Galneder, R.</creator><creator>Rädler, J. O.</creator><general>American Institute of Physics</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope></search><sort><creationdate>20090701</creationdate><title>Microelectrophoresis in a laser trap: A platform for measuring electrokinetic interactions and flow properties within microstructures</title><author>Kahl, V. ; Gansen, A. ; Galneder, R. ; Rädler, J. O.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c338t-59e6ed0e139f859a776907a4f1b17c25f7829f32734a796d0db05895e4dda6683</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2009</creationdate><topic>Algorithms</topic><topic>Calibration</topic><topic>Elasticity</topic><topic>Electricity</topic><topic>Electrophoresis - instrumentation</topic><topic>Kinetics</topic><topic>Lasers</topic><topic>Linear Models</topic><topic>Lipid Bilayers - chemistry</topic><topic>Microfluidics - instrumentation</topic><topic>Microspheres</topic><topic>Microtechnology - instrumentation</topic><topic>Optics and Photonics - instrumentation</topic><topic>Osmosis</topic><topic>Phosphatidylcholines - chemistry</topic><topic>Silicon Dioxide - chemistry</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kahl, V.</creatorcontrib><creatorcontrib>Gansen, A.</creatorcontrib><creatorcontrib>Galneder, R.</creatorcontrib><creatorcontrib>Rädler, J. O.</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Review of scientific instruments</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kahl, V.</au><au>Gansen, A.</au><au>Galneder, R.</au><au>Rädler, J. O.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Microelectrophoresis in a laser trap: A platform for measuring electrokinetic interactions and flow properties within microstructures</atitle><jtitle>Review of scientific instruments</jtitle><addtitle>Rev Sci Instrum</addtitle><date>2009-07-01</date><risdate>2009</risdate><volume>80</volume><issue>7</issue><spage>073704</spage><epage>073704-9</epage><pages>073704-073704-9</pages><issn>0034-6748</issn><eissn>1089-7623</eissn><coden>RSINAK</coden><abstract>We describe a combination of microelectrophoresis and laser-trap methodology to accurately measure the electric force acting on a charged microsphere which is trapped in an optical tweezer. This field/trap apparatus allows measuring of the zeta potential with submillivolt accuracy and high temporal resolution. The combination with stop-flow techniques in principle provides a mean to observe adsorption or enzyme kinetics with single molecule sensitivity. We show that it is possible to accurately profile the position and frequency dependent hydrodynamic and electro-osmotic flow inside a microchannel structure of dimensions typically used in microfluidic applications without the need of fluorescent markers. We found good agreement to the theory of electrophoretic flow when retardation effects for rapidly alternating electric fields are included.</abstract><cop>United States</cop><pub>American Institute of Physics</pub><pmid>19655953</pmid><doi>10.1063/1.3169511</doi><tpages>1</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0034-6748
ispartof Review of scientific instruments, 2009-07, Vol.80 (7), p.073704-073704-9
issn 0034-6748
1089-7623
language eng
recordid cdi_proquest_miscellaneous_67559981
source American Institute of Physics:Jisc Collections:Transitional Journals Agreement 2021-23 (Reading list); AIP Journals (American Institute of Physics)
subjects Algorithms
Calibration
Elasticity
Electricity
Electrophoresis - instrumentation
Kinetics
Lasers
Linear Models
Lipid Bilayers - chemistry
Microfluidics - instrumentation
Microspheres
Microtechnology - instrumentation
Optics and Photonics - instrumentation
Osmosis
Phosphatidylcholines - chemistry
Silicon Dioxide - chemistry
title Microelectrophoresis in a laser trap: A platform for measuring electrokinetic interactions and flow properties within microstructures
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-26T18%3A31%3A16IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Microelectrophoresis%20in%20a%20laser%20trap:%20A%20platform%20for%20measuring%20electrokinetic%20interactions%20and%20flow%20properties%20within%20microstructures&rft.jtitle=Review%20of%20scientific%20instruments&rft.au=Kahl,%20V.&rft.date=2009-07-01&rft.volume=80&rft.issue=7&rft.spage=073704&rft.epage=073704-9&rft.pages=073704-073704-9&rft.issn=0034-6748&rft.eissn=1089-7623&rft.coden=RSINAK&rft_id=info:doi/10.1063/1.3169511&rft_dat=%3Cproquest_cross%3E67559981%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c338t-59e6ed0e139f859a776907a4f1b17c25f7829f32734a796d0db05895e4dda6683%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=67559981&rft_id=info:pmid/19655953&rfr_iscdi=true