Loading…
Microelectrophoresis in a laser trap: A platform for measuring electrokinetic interactions and flow properties within microstructures
We describe a combination of microelectrophoresis and laser-trap methodology to accurately measure the electric force acting on a charged microsphere which is trapped in an optical tweezer. This field/trap apparatus allows measuring of the zeta potential with submillivolt accuracy and high temporal...
Saved in:
Published in: | Review of scientific instruments 2009-07, Vol.80 (7), p.073704-073704-9 |
---|---|
Main Authors: | , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c338t-59e6ed0e139f859a776907a4f1b17c25f7829f32734a796d0db05895e4dda6683 |
---|---|
cites | cdi_FETCH-LOGICAL-c338t-59e6ed0e139f859a776907a4f1b17c25f7829f32734a796d0db05895e4dda6683 |
container_end_page | 073704-9 |
container_issue | 7 |
container_start_page | 073704 |
container_title | Review of scientific instruments |
container_volume | 80 |
creator | Kahl, V. Gansen, A. Galneder, R. Rädler, J. O. |
description | We describe a combination of microelectrophoresis and laser-trap methodology to accurately measure the electric force acting on a charged microsphere which is trapped in an optical tweezer. This field/trap apparatus allows measuring of the zeta potential with submillivolt accuracy and high temporal resolution. The combination with stop-flow techniques in principle provides a mean to observe adsorption or enzyme kinetics with single molecule sensitivity. We show that it is possible to accurately profile the position and frequency dependent hydrodynamic and electro-osmotic flow inside a microchannel structure of dimensions typically used in microfluidic applications without the need of fluorescent markers. We found good agreement to the theory of electrophoretic flow when retardation effects for rapidly alternating electric fields are included. |
doi_str_mv | 10.1063/1.3169511 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_67559981</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>67559981</sourcerecordid><originalsourceid>FETCH-LOGICAL-c338t-59e6ed0e139f859a776907a4f1b17c25f7829f32734a796d0db05895e4dda6683</originalsourceid><addsrcrecordid>eNp1kU1LAzEQhoMotlYP_gHJSfCwmjSbZONBKMUvqHjR85JmZ210v0yyFH-A_9ssXfCic8hcnnlneILQKSWXlAh2RS8ZFYpTuoemlGQqkWLO9tGUEJYmQqbZBB15_05iRegQTagSnCvOpuj7yRrXQgUmuLbbtA689dg2WONKe3A4ON1d4wXuKh3K1tU4PrgG7Xtnmzc8Tn7YBoI1cTCA0ybYtvFYNwUuq3aLuxgNLljweGvDJqbXw1YfXG9CH1ceo4NSVx5Oxj5Dr3e3L8uHZPV8_7hcrBLDWBYSrkBAQYAyVWZcaSmFIlKnJV1Taea8lNlclWwuWaqlEgUp1oRnikNaFFqIjM3Q-S43XvTZgw95bb2BqtINtL3PhYxaVEYjeLEDhzO9gzLvnK21-8opyQfnOc1H55E9G0P7dQ3FLzlKjsDNDvDGBj24-T_tr-9gP7bXlLk</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>67559981</pqid></control><display><type>article</type><title>Microelectrophoresis in a laser trap: A platform for measuring electrokinetic interactions and flow properties within microstructures</title><source>American Institute of Physics:Jisc Collections:Transitional Journals Agreement 2021-23 (Reading list)</source><source>AIP Journals (American Institute of Physics)</source><creator>Kahl, V. ; Gansen, A. ; Galneder, R. ; Rädler, J. O.</creator><creatorcontrib>Kahl, V. ; Gansen, A. ; Galneder, R. ; Rädler, J. O.</creatorcontrib><description>We describe a combination of microelectrophoresis and laser-trap methodology to accurately measure the electric force acting on a charged microsphere which is trapped in an optical tweezer. This field/trap apparatus allows measuring of the zeta potential with submillivolt accuracy and high temporal resolution. The combination with stop-flow techniques in principle provides a mean to observe adsorption or enzyme kinetics with single molecule sensitivity. We show that it is possible to accurately profile the position and frequency dependent hydrodynamic and electro-osmotic flow inside a microchannel structure of dimensions typically used in microfluidic applications without the need of fluorescent markers. We found good agreement to the theory of electrophoretic flow when retardation effects for rapidly alternating electric fields are included.</description><identifier>ISSN: 0034-6748</identifier><identifier>EISSN: 1089-7623</identifier><identifier>DOI: 10.1063/1.3169511</identifier><identifier>PMID: 19655953</identifier><identifier>CODEN: RSINAK</identifier><language>eng</language><publisher>United States: American Institute of Physics</publisher><subject>Algorithms ; Calibration ; Elasticity ; Electricity ; Electrophoresis - instrumentation ; Kinetics ; Lasers ; Linear Models ; Lipid Bilayers - chemistry ; Microfluidics - instrumentation ; Microspheres ; Microtechnology - instrumentation ; Optics and Photonics - instrumentation ; Osmosis ; Phosphatidylcholines - chemistry ; Silicon Dioxide - chemistry</subject><ispartof>Review of scientific instruments, 2009-07, Vol.80 (7), p.073704-073704-9</ispartof><rights>2009 American Institute of Physics</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c338t-59e6ed0e139f859a776907a4f1b17c25f7829f32734a796d0db05895e4dda6683</citedby><cites>FETCH-LOGICAL-c338t-59e6ed0e139f859a776907a4f1b17c25f7829f32734a796d0db05895e4dda6683</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://pubs.aip.org/rsi/article-lookup/doi/10.1063/1.3169511$$EHTML$$P50$$Gscitation$$H</linktohtml><link.rule.ids>314,780,782,784,795,27924,27925,76383</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/19655953$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Kahl, V.</creatorcontrib><creatorcontrib>Gansen, A.</creatorcontrib><creatorcontrib>Galneder, R.</creatorcontrib><creatorcontrib>Rädler, J. O.</creatorcontrib><title>Microelectrophoresis in a laser trap: A platform for measuring electrokinetic interactions and flow properties within microstructures</title><title>Review of scientific instruments</title><addtitle>Rev Sci Instrum</addtitle><description>We describe a combination of microelectrophoresis and laser-trap methodology to accurately measure the electric force acting on a charged microsphere which is trapped in an optical tweezer. This field/trap apparatus allows measuring of the zeta potential with submillivolt accuracy and high temporal resolution. The combination with stop-flow techniques in principle provides a mean to observe adsorption or enzyme kinetics with single molecule sensitivity. We show that it is possible to accurately profile the position and frequency dependent hydrodynamic and electro-osmotic flow inside a microchannel structure of dimensions typically used in microfluidic applications without the need of fluorescent markers. We found good agreement to the theory of electrophoretic flow when retardation effects for rapidly alternating electric fields are included.</description><subject>Algorithms</subject><subject>Calibration</subject><subject>Elasticity</subject><subject>Electricity</subject><subject>Electrophoresis - instrumentation</subject><subject>Kinetics</subject><subject>Lasers</subject><subject>Linear Models</subject><subject>Lipid Bilayers - chemistry</subject><subject>Microfluidics - instrumentation</subject><subject>Microspheres</subject><subject>Microtechnology - instrumentation</subject><subject>Optics and Photonics - instrumentation</subject><subject>Osmosis</subject><subject>Phosphatidylcholines - chemistry</subject><subject>Silicon Dioxide - chemistry</subject><issn>0034-6748</issn><issn>1089-7623</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2009</creationdate><recordtype>article</recordtype><recordid>eNp1kU1LAzEQhoMotlYP_gHJSfCwmjSbZONBKMUvqHjR85JmZ210v0yyFH-A_9ssXfCic8hcnnlneILQKSWXlAh2RS8ZFYpTuoemlGQqkWLO9tGUEJYmQqbZBB15_05iRegQTagSnCvOpuj7yRrXQgUmuLbbtA689dg2WONKe3A4ON1d4wXuKh3K1tU4PrgG7Xtnmzc8Tn7YBoI1cTCA0ybYtvFYNwUuq3aLuxgNLljweGvDJqbXw1YfXG9CH1ceo4NSVx5Oxj5Dr3e3L8uHZPV8_7hcrBLDWBYSrkBAQYAyVWZcaSmFIlKnJV1Taea8lNlclWwuWaqlEgUp1oRnikNaFFqIjM3Q-S43XvTZgw95bb2BqtINtL3PhYxaVEYjeLEDhzO9gzLvnK21-8opyQfnOc1H55E9G0P7dQ3FLzlKjsDNDvDGBj24-T_tr-9gP7bXlLk</recordid><startdate>20090701</startdate><enddate>20090701</enddate><creator>Kahl, V.</creator><creator>Gansen, A.</creator><creator>Galneder, R.</creator><creator>Rädler, J. O.</creator><general>American Institute of Physics</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope></search><sort><creationdate>20090701</creationdate><title>Microelectrophoresis in a laser trap: A platform for measuring electrokinetic interactions and flow properties within microstructures</title><author>Kahl, V. ; Gansen, A. ; Galneder, R. ; Rädler, J. O.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c338t-59e6ed0e139f859a776907a4f1b17c25f7829f32734a796d0db05895e4dda6683</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2009</creationdate><topic>Algorithms</topic><topic>Calibration</topic><topic>Elasticity</topic><topic>Electricity</topic><topic>Electrophoresis - instrumentation</topic><topic>Kinetics</topic><topic>Lasers</topic><topic>Linear Models</topic><topic>Lipid Bilayers - chemistry</topic><topic>Microfluidics - instrumentation</topic><topic>Microspheres</topic><topic>Microtechnology - instrumentation</topic><topic>Optics and Photonics - instrumentation</topic><topic>Osmosis</topic><topic>Phosphatidylcholines - chemistry</topic><topic>Silicon Dioxide - chemistry</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kahl, V.</creatorcontrib><creatorcontrib>Gansen, A.</creatorcontrib><creatorcontrib>Galneder, R.</creatorcontrib><creatorcontrib>Rädler, J. O.</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Review of scientific instruments</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kahl, V.</au><au>Gansen, A.</au><au>Galneder, R.</au><au>Rädler, J. O.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Microelectrophoresis in a laser trap: A platform for measuring electrokinetic interactions and flow properties within microstructures</atitle><jtitle>Review of scientific instruments</jtitle><addtitle>Rev Sci Instrum</addtitle><date>2009-07-01</date><risdate>2009</risdate><volume>80</volume><issue>7</issue><spage>073704</spage><epage>073704-9</epage><pages>073704-073704-9</pages><issn>0034-6748</issn><eissn>1089-7623</eissn><coden>RSINAK</coden><abstract>We describe a combination of microelectrophoresis and laser-trap methodology to accurately measure the electric force acting on a charged microsphere which is trapped in an optical tweezer. This field/trap apparatus allows measuring of the zeta potential with submillivolt accuracy and high temporal resolution. The combination with stop-flow techniques in principle provides a mean to observe adsorption or enzyme kinetics with single molecule sensitivity. We show that it is possible to accurately profile the position and frequency dependent hydrodynamic and electro-osmotic flow inside a microchannel structure of dimensions typically used in microfluidic applications without the need of fluorescent markers. We found good agreement to the theory of electrophoretic flow when retardation effects for rapidly alternating electric fields are included.</abstract><cop>United States</cop><pub>American Institute of Physics</pub><pmid>19655953</pmid><doi>10.1063/1.3169511</doi><tpages>1</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0034-6748 |
ispartof | Review of scientific instruments, 2009-07, Vol.80 (7), p.073704-073704-9 |
issn | 0034-6748 1089-7623 |
language | eng |
recordid | cdi_proquest_miscellaneous_67559981 |
source | American Institute of Physics:Jisc Collections:Transitional Journals Agreement 2021-23 (Reading list); AIP Journals (American Institute of Physics) |
subjects | Algorithms Calibration Elasticity Electricity Electrophoresis - instrumentation Kinetics Lasers Linear Models Lipid Bilayers - chemistry Microfluidics - instrumentation Microspheres Microtechnology - instrumentation Optics and Photonics - instrumentation Osmosis Phosphatidylcholines - chemistry Silicon Dioxide - chemistry |
title | Microelectrophoresis in a laser trap: A platform for measuring electrokinetic interactions and flow properties within microstructures |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-26T18%3A31%3A16IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Microelectrophoresis%20in%20a%20laser%20trap:%20A%20platform%20for%20measuring%20electrokinetic%20interactions%20and%20flow%20properties%20within%20microstructures&rft.jtitle=Review%20of%20scientific%20instruments&rft.au=Kahl,%20V.&rft.date=2009-07-01&rft.volume=80&rft.issue=7&rft.spage=073704&rft.epage=073704-9&rft.pages=073704-073704-9&rft.issn=0034-6748&rft.eissn=1089-7623&rft.coden=RSINAK&rft_id=info:doi/10.1063/1.3169511&rft_dat=%3Cproquest_cross%3E67559981%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c338t-59e6ed0e139f859a776907a4f1b17c25f7829f32734a796d0db05895e4dda6683%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=67559981&rft_id=info:pmid/19655953&rfr_iscdi=true |