Loading…
ADP‐ribosylation of dinitrogenase reductase in Azospirillum brasilense is regulated by AmtB‐dependent membrane sequestration of DraG
Summary Nitrogen fixation in some diazotrophic bacteria is regulated by mono‐ADP‐ribosylation of dinitrogenase reductase (NifH) that occurs in response to addition of ammonium to the extracellular medium. This process is mediated by dinitrogenase reductase ADP‐ribosyltransferase (DraT) and reversed...
Saved in:
Published in: | Molecular microbiology 2006-01, Vol.59 (1), p.326-337 |
---|---|
Main Authors: | , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c5054-5808e0e345c3551937e3880618dcca29f6ebe0d5d85051009560bec73a93d4ea3 |
---|---|
cites | cdi_FETCH-LOGICAL-c5054-5808e0e345c3551937e3880618dcca29f6ebe0d5d85051009560bec73a93d4ea3 |
container_end_page | 337 |
container_issue | 1 |
container_start_page | 326 |
container_title | Molecular microbiology |
container_volume | 59 |
creator | Huergo, Luciano F. Souza, Emanuel M. Araujo, Mariana S. Pedrosa, Fábio O. Chubatsu, Leda S. Steffens, Maria B. R. Merrick, Mike |
description | Summary
Nitrogen fixation in some diazotrophic bacteria is regulated by mono‐ADP‐ribosylation of dinitrogenase reductase (NifH) that occurs in response to addition of ammonium to the extracellular medium. This process is mediated by dinitrogenase reductase ADP‐ribosyltransferase (DraT) and reversed by dinitrogenase reductase glycohydrolase (DraG), but the means by which the activities of these enzymes are regulated are unknown. We have investigated the role of the PII proteins (GlnB and GlnZ), the ammonia channel protein AmtB and the cellular localization of DraG in the regulation of the NifH‐modification process in Azospirillum brasilense. GlnB, GlnZ and DraG were all membrane‐associated after an ammonium shock, and both this membrane sequestration and ADP‐ribosylation of NifH were defective in an amtB mutant. We now propose a model in which membrane association of DraG after an ammonium shock creates a physical separation from its cytoplasmic substrate NifH thereby inhibiting ADP‐ribosyl‐removal. Our observations identify a novel role for an ammonia channel (Amt) protein in the regulation of bacterial nitrogen metabolism by mediating membrane sequestration of a protein other than a PII family member. They also suggest a model for control of ADP‐ribosylation that is likely to be applicable to all diazotrophs that exhibit such post‐translational regulation of nitrogenase. |
doi_str_mv | 10.1111/j.1365-2958.2005.04944.x |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_67578732</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>17458392</sourcerecordid><originalsourceid>FETCH-LOGICAL-c5054-5808e0e345c3551937e3880618dcca29f6ebe0d5d85051009560bec73a93d4ea3</originalsourceid><addsrcrecordid>eNqNkcFu1DAQhi0EokvhFZCFBLcEO45j-8Bh20Kp1AoOIHGzHHtSeZU4i52ILieOHHlGngSnu2olLuCLR5pvfv-eHyFMSUnzeb0pKWt4USkuy4oQXpJa1XV58wCt7hoP0YooTgomqy9H6ElKG0IoIw17jI5ow7hiTK7Qz_XZx98_fkXfjmnXm8mPAY8ddj74KY7XEEwCHMHNdloqH_D6-5i2Pvq-nwfcRpN8D2Fppcxdz1kDHG53eD1MJ1nZwRaCgzDhAYaMB8AJvs6Qpnj32lk050_Ro870CZ4d7mP0-d3bT6fvi8sP5xen68vCcsLrgksigQCruWWcU8UEMClJQ6Wz1lSqa6AF4riTGackb6AhLVjBjGKuBsOO0au97jaOtzb04JOFvs_OxjnpRnAhBav-CVJRc8nUAr74C9yMcwz5E5qqhldU8iZDcg_ZOKYUodPb6AcTd5oSvWSqN3qJTi_R6SVTfZupvsmjzw_6czuAux88hJiBlwfAJGv6Li_Z-nTPiVrIStDMvdlz33Jku_82oK-uLpaK_QHA_MAa</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>196521856</pqid></control><display><type>article</type><title>ADP‐ribosylation of dinitrogenase reductase in Azospirillum brasilense is regulated by AmtB‐dependent membrane sequestration of DraG</title><source>Wiley</source><creator>Huergo, Luciano F. ; Souza, Emanuel M. ; Araujo, Mariana S. ; Pedrosa, Fábio O. ; Chubatsu, Leda S. ; Steffens, Maria B. R. ; Merrick, Mike</creator><creatorcontrib>Huergo, Luciano F. ; Souza, Emanuel M. ; Araujo, Mariana S. ; Pedrosa, Fábio O. ; Chubatsu, Leda S. ; Steffens, Maria B. R. ; Merrick, Mike</creatorcontrib><description>Summary
Nitrogen fixation in some diazotrophic bacteria is regulated by mono‐ADP‐ribosylation of dinitrogenase reductase (NifH) that occurs in response to addition of ammonium to the extracellular medium. This process is mediated by dinitrogenase reductase ADP‐ribosyltransferase (DraT) and reversed by dinitrogenase reductase glycohydrolase (DraG), but the means by which the activities of these enzymes are regulated are unknown. We have investigated the role of the PII proteins (GlnB and GlnZ), the ammonia channel protein AmtB and the cellular localization of DraG in the regulation of the NifH‐modification process in Azospirillum brasilense. GlnB, GlnZ and DraG were all membrane‐associated after an ammonium shock, and both this membrane sequestration and ADP‐ribosylation of NifH were defective in an amtB mutant. We now propose a model in which membrane association of DraG after an ammonium shock creates a physical separation from its cytoplasmic substrate NifH thereby inhibiting ADP‐ribosyl‐removal. Our observations identify a novel role for an ammonia channel (Amt) protein in the regulation of bacterial nitrogen metabolism by mediating membrane sequestration of a protein other than a PII family member. They also suggest a model for control of ADP‐ribosylation that is likely to be applicable to all diazotrophs that exhibit such post‐translational regulation of nitrogenase.</description><identifier>ISSN: 0950-382X</identifier><identifier>EISSN: 1365-2958</identifier><identifier>DOI: 10.1111/j.1365-2958.2005.04944.x</identifier><identifier>PMID: 16359338</identifier><language>eng</language><publisher>Oxford, UK: Blackwell Science Ltd</publisher><subject>Adenosine Diphosphate Ribose - metabolism ; Ammonia ; Azospirillum brasilense ; Azospirillum brasilense - cytology ; Azospirillum brasilense - enzymology ; Bacteria ; Bacterial Proteins - genetics ; Bacterial Proteins - metabolism ; Bacteriology ; Biochemistry ; Biological and medical sciences ; Cation Transport Proteins - genetics ; Cation Transport Proteins - metabolism ; Cell Membrane - enzymology ; Enzymes ; Fundamental and applied biological sciences. Psychology ; Gene Expression Regulation, Bacterial ; Glutamate-Ammonia Ligase - genetics ; Glutamate-Ammonia Ligase - metabolism ; Membrane separation ; Microbiology ; Miscellaneous ; Molecular biology ; N-Glycosyl Hydrolases - genetics ; N-Glycosyl Hydrolases - metabolism ; Nitrogen ; Oxidoreductases - genetics ; Oxidoreductases - metabolism ; PII Nitrogen Regulatory Proteins - genetics ; PII Nitrogen Regulatory Proteins - metabolism ; Protein Processing, Post-Translational ; Quaternary Ammonium Compounds - chemistry ; Quaternary Ammonium Compounds - metabolism</subject><ispartof>Molecular microbiology, 2006-01, Vol.59 (1), p.326-337</ispartof><rights>2006 INIST-CNRS</rights><rights>Copyright Blackwell Publishing Jan 2006</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c5054-5808e0e345c3551937e3880618dcca29f6ebe0d5d85051009560bec73a93d4ea3</citedby><cites>FETCH-LOGICAL-c5054-5808e0e345c3551937e3880618dcca29f6ebe0d5d85051009560bec73a93d4ea3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,4024,27923,27924,27925</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=17478271$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/16359338$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Huergo, Luciano F.</creatorcontrib><creatorcontrib>Souza, Emanuel M.</creatorcontrib><creatorcontrib>Araujo, Mariana S.</creatorcontrib><creatorcontrib>Pedrosa, Fábio O.</creatorcontrib><creatorcontrib>Chubatsu, Leda S.</creatorcontrib><creatorcontrib>Steffens, Maria B. R.</creatorcontrib><creatorcontrib>Merrick, Mike</creatorcontrib><title>ADP‐ribosylation of dinitrogenase reductase in Azospirillum brasilense is regulated by AmtB‐dependent membrane sequestration of DraG</title><title>Molecular microbiology</title><addtitle>Mol Microbiol</addtitle><description>Summary
Nitrogen fixation in some diazotrophic bacteria is regulated by mono‐ADP‐ribosylation of dinitrogenase reductase (NifH) that occurs in response to addition of ammonium to the extracellular medium. This process is mediated by dinitrogenase reductase ADP‐ribosyltransferase (DraT) and reversed by dinitrogenase reductase glycohydrolase (DraG), but the means by which the activities of these enzymes are regulated are unknown. We have investigated the role of the PII proteins (GlnB and GlnZ), the ammonia channel protein AmtB and the cellular localization of DraG in the regulation of the NifH‐modification process in Azospirillum brasilense. GlnB, GlnZ and DraG were all membrane‐associated after an ammonium shock, and both this membrane sequestration and ADP‐ribosylation of NifH were defective in an amtB mutant. We now propose a model in which membrane association of DraG after an ammonium shock creates a physical separation from its cytoplasmic substrate NifH thereby inhibiting ADP‐ribosyl‐removal. Our observations identify a novel role for an ammonia channel (Amt) protein in the regulation of bacterial nitrogen metabolism by mediating membrane sequestration of a protein other than a PII family member. They also suggest a model for control of ADP‐ribosylation that is likely to be applicable to all diazotrophs that exhibit such post‐translational regulation of nitrogenase.</description><subject>Adenosine Diphosphate Ribose - metabolism</subject><subject>Ammonia</subject><subject>Azospirillum brasilense</subject><subject>Azospirillum brasilense - cytology</subject><subject>Azospirillum brasilense - enzymology</subject><subject>Bacteria</subject><subject>Bacterial Proteins - genetics</subject><subject>Bacterial Proteins - metabolism</subject><subject>Bacteriology</subject><subject>Biochemistry</subject><subject>Biological and medical sciences</subject><subject>Cation Transport Proteins - genetics</subject><subject>Cation Transport Proteins - metabolism</subject><subject>Cell Membrane - enzymology</subject><subject>Enzymes</subject><subject>Fundamental and applied biological sciences. Psychology</subject><subject>Gene Expression Regulation, Bacterial</subject><subject>Glutamate-Ammonia Ligase - genetics</subject><subject>Glutamate-Ammonia Ligase - metabolism</subject><subject>Membrane separation</subject><subject>Microbiology</subject><subject>Miscellaneous</subject><subject>Molecular biology</subject><subject>N-Glycosyl Hydrolases - genetics</subject><subject>N-Glycosyl Hydrolases - metabolism</subject><subject>Nitrogen</subject><subject>Oxidoreductases - genetics</subject><subject>Oxidoreductases - metabolism</subject><subject>PII Nitrogen Regulatory Proteins - genetics</subject><subject>PII Nitrogen Regulatory Proteins - metabolism</subject><subject>Protein Processing, Post-Translational</subject><subject>Quaternary Ammonium Compounds - chemistry</subject><subject>Quaternary Ammonium Compounds - metabolism</subject><issn>0950-382X</issn><issn>1365-2958</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2006</creationdate><recordtype>article</recordtype><recordid>eNqNkcFu1DAQhi0EokvhFZCFBLcEO45j-8Bh20Kp1AoOIHGzHHtSeZU4i52ILieOHHlGngSnu2olLuCLR5pvfv-eHyFMSUnzeb0pKWt4USkuy4oQXpJa1XV58wCt7hoP0YooTgomqy9H6ElKG0IoIw17jI5ow7hiTK7Qz_XZx98_fkXfjmnXm8mPAY8ddj74KY7XEEwCHMHNdloqH_D6-5i2Pvq-nwfcRpN8D2Fppcxdz1kDHG53eD1MJ1nZwRaCgzDhAYaMB8AJvs6Qpnj32lk050_Ro870CZ4d7mP0-d3bT6fvi8sP5xen68vCcsLrgksigQCruWWcU8UEMClJQ6Wz1lSqa6AF4riTGackb6AhLVjBjGKuBsOO0au97jaOtzb04JOFvs_OxjnpRnAhBav-CVJRc8nUAr74C9yMcwz5E5qqhldU8iZDcg_ZOKYUodPb6AcTd5oSvWSqN3qJTi_R6SVTfZupvsmjzw_6czuAux88hJiBlwfAJGv6Li_Z-nTPiVrIStDMvdlz33Jku_82oK-uLpaK_QHA_MAa</recordid><startdate>200601</startdate><enddate>200601</enddate><creator>Huergo, Luciano F.</creator><creator>Souza, Emanuel M.</creator><creator>Araujo, Mariana S.</creator><creator>Pedrosa, Fábio O.</creator><creator>Chubatsu, Leda S.</creator><creator>Steffens, Maria B. R.</creator><creator>Merrick, Mike</creator><general>Blackwell Science Ltd</general><general>Blackwell Science</general><general>Blackwell Publishing Ltd</general><scope>IQODW</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QL</scope><scope>7QP</scope><scope>7QR</scope><scope>7TK</scope><scope>7TM</scope><scope>7U9</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>H94</scope><scope>M7N</scope><scope>P64</scope><scope>RC3</scope><scope>7X8</scope></search><sort><creationdate>200601</creationdate><title>ADP‐ribosylation of dinitrogenase reductase in Azospirillum brasilense is regulated by AmtB‐dependent membrane sequestration of DraG</title><author>Huergo, Luciano F. ; Souza, Emanuel M. ; Araujo, Mariana S. ; Pedrosa, Fábio O. ; Chubatsu, Leda S. ; Steffens, Maria B. R. ; Merrick, Mike</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c5054-5808e0e345c3551937e3880618dcca29f6ebe0d5d85051009560bec73a93d4ea3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2006</creationdate><topic>Adenosine Diphosphate Ribose - metabolism</topic><topic>Ammonia</topic><topic>Azospirillum brasilense</topic><topic>Azospirillum brasilense - cytology</topic><topic>Azospirillum brasilense - enzymology</topic><topic>Bacteria</topic><topic>Bacterial Proteins - genetics</topic><topic>Bacterial Proteins - metabolism</topic><topic>Bacteriology</topic><topic>Biochemistry</topic><topic>Biological and medical sciences</topic><topic>Cation Transport Proteins - genetics</topic><topic>Cation Transport Proteins - metabolism</topic><topic>Cell Membrane - enzymology</topic><topic>Enzymes</topic><topic>Fundamental and applied biological sciences. Psychology</topic><topic>Gene Expression Regulation, Bacterial</topic><topic>Glutamate-Ammonia Ligase - genetics</topic><topic>Glutamate-Ammonia Ligase - metabolism</topic><topic>Membrane separation</topic><topic>Microbiology</topic><topic>Miscellaneous</topic><topic>Molecular biology</topic><topic>N-Glycosyl Hydrolases - genetics</topic><topic>N-Glycosyl Hydrolases - metabolism</topic><topic>Nitrogen</topic><topic>Oxidoreductases - genetics</topic><topic>Oxidoreductases - metabolism</topic><topic>PII Nitrogen Regulatory Proteins - genetics</topic><topic>PII Nitrogen Regulatory Proteins - metabolism</topic><topic>Protein Processing, Post-Translational</topic><topic>Quaternary Ammonium Compounds - chemistry</topic><topic>Quaternary Ammonium Compounds - metabolism</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Huergo, Luciano F.</creatorcontrib><creatorcontrib>Souza, Emanuel M.</creatorcontrib><creatorcontrib>Araujo, Mariana S.</creatorcontrib><creatorcontrib>Pedrosa, Fábio O.</creatorcontrib><creatorcontrib>Chubatsu, Leda S.</creatorcontrib><creatorcontrib>Steffens, Maria B. R.</creatorcontrib><creatorcontrib>Merrick, Mike</creatorcontrib><collection>Pascal-Francis</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium & Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>Molecular microbiology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Huergo, Luciano F.</au><au>Souza, Emanuel M.</au><au>Araujo, Mariana S.</au><au>Pedrosa, Fábio O.</au><au>Chubatsu, Leda S.</au><au>Steffens, Maria B. R.</au><au>Merrick, Mike</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>ADP‐ribosylation of dinitrogenase reductase in Azospirillum brasilense is regulated by AmtB‐dependent membrane sequestration of DraG</atitle><jtitle>Molecular microbiology</jtitle><addtitle>Mol Microbiol</addtitle><date>2006-01</date><risdate>2006</risdate><volume>59</volume><issue>1</issue><spage>326</spage><epage>337</epage><pages>326-337</pages><issn>0950-382X</issn><eissn>1365-2958</eissn><abstract>Summary
Nitrogen fixation in some diazotrophic bacteria is regulated by mono‐ADP‐ribosylation of dinitrogenase reductase (NifH) that occurs in response to addition of ammonium to the extracellular medium. This process is mediated by dinitrogenase reductase ADP‐ribosyltransferase (DraT) and reversed by dinitrogenase reductase glycohydrolase (DraG), but the means by which the activities of these enzymes are regulated are unknown. We have investigated the role of the PII proteins (GlnB and GlnZ), the ammonia channel protein AmtB and the cellular localization of DraG in the regulation of the NifH‐modification process in Azospirillum brasilense. GlnB, GlnZ and DraG were all membrane‐associated after an ammonium shock, and both this membrane sequestration and ADP‐ribosylation of NifH were defective in an amtB mutant. We now propose a model in which membrane association of DraG after an ammonium shock creates a physical separation from its cytoplasmic substrate NifH thereby inhibiting ADP‐ribosyl‐removal. Our observations identify a novel role for an ammonia channel (Amt) protein in the regulation of bacterial nitrogen metabolism by mediating membrane sequestration of a protein other than a PII family member. They also suggest a model for control of ADP‐ribosylation that is likely to be applicable to all diazotrophs that exhibit such post‐translational regulation of nitrogenase.</abstract><cop>Oxford, UK</cop><pub>Blackwell Science Ltd</pub><pmid>16359338</pmid><doi>10.1111/j.1365-2958.2005.04944.x</doi><tpages>12</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0950-382X |
ispartof | Molecular microbiology, 2006-01, Vol.59 (1), p.326-337 |
issn | 0950-382X 1365-2958 |
language | eng |
recordid | cdi_proquest_miscellaneous_67578732 |
source | Wiley |
subjects | Adenosine Diphosphate Ribose - metabolism Ammonia Azospirillum brasilense Azospirillum brasilense - cytology Azospirillum brasilense - enzymology Bacteria Bacterial Proteins - genetics Bacterial Proteins - metabolism Bacteriology Biochemistry Biological and medical sciences Cation Transport Proteins - genetics Cation Transport Proteins - metabolism Cell Membrane - enzymology Enzymes Fundamental and applied biological sciences. Psychology Gene Expression Regulation, Bacterial Glutamate-Ammonia Ligase - genetics Glutamate-Ammonia Ligase - metabolism Membrane separation Microbiology Miscellaneous Molecular biology N-Glycosyl Hydrolases - genetics N-Glycosyl Hydrolases - metabolism Nitrogen Oxidoreductases - genetics Oxidoreductases - metabolism PII Nitrogen Regulatory Proteins - genetics PII Nitrogen Regulatory Proteins - metabolism Protein Processing, Post-Translational Quaternary Ammonium Compounds - chemistry Quaternary Ammonium Compounds - metabolism |
title | ADP‐ribosylation of dinitrogenase reductase in Azospirillum brasilense is regulated by AmtB‐dependent membrane sequestration of DraG |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-30T22%3A02%3A35IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=ADP%E2%80%90ribosylation%20of%20dinitrogenase%20reductase%20in%20Azospirillum%20brasilense%20is%20regulated%20by%20AmtB%E2%80%90dependent%20membrane%20sequestration%20of%20DraG&rft.jtitle=Molecular%20microbiology&rft.au=Huergo,%20Luciano%20F.&rft.date=2006-01&rft.volume=59&rft.issue=1&rft.spage=326&rft.epage=337&rft.pages=326-337&rft.issn=0950-382X&rft.eissn=1365-2958&rft_id=info:doi/10.1111/j.1365-2958.2005.04944.x&rft_dat=%3Cproquest_cross%3E17458392%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c5054-5808e0e345c3551937e3880618dcca29f6ebe0d5d85051009560bec73a93d4ea3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=196521856&rft_id=info:pmid/16359338&rfr_iscdi=true |