Loading…

ADP‐ribosylation of dinitrogenase reductase in Azospirillum brasilense is regulated by AmtB‐dependent membrane sequestration of DraG

Summary Nitrogen fixation in some diazotrophic bacteria is regulated by mono‐ADP‐ribosylation of dinitrogenase reductase (NifH) that occurs in response to addition of ammonium to the extracellular medium. This process is mediated by dinitrogenase reductase ADP‐ribosyltransferase (DraT) and reversed...

Full description

Saved in:
Bibliographic Details
Published in:Molecular microbiology 2006-01, Vol.59 (1), p.326-337
Main Authors: Huergo, Luciano F., Souza, Emanuel M., Araujo, Mariana S., Pedrosa, Fábio O., Chubatsu, Leda S., Steffens, Maria B. R., Merrick, Mike
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c5054-5808e0e345c3551937e3880618dcca29f6ebe0d5d85051009560bec73a93d4ea3
cites cdi_FETCH-LOGICAL-c5054-5808e0e345c3551937e3880618dcca29f6ebe0d5d85051009560bec73a93d4ea3
container_end_page 337
container_issue 1
container_start_page 326
container_title Molecular microbiology
container_volume 59
creator Huergo, Luciano F.
Souza, Emanuel M.
Araujo, Mariana S.
Pedrosa, Fábio O.
Chubatsu, Leda S.
Steffens, Maria B. R.
Merrick, Mike
description Summary Nitrogen fixation in some diazotrophic bacteria is regulated by mono‐ADP‐ribosylation of dinitrogenase reductase (NifH) that occurs in response to addition of ammonium to the extracellular medium. This process is mediated by dinitrogenase reductase ADP‐ribosyltransferase (DraT) and reversed by dinitrogenase reductase glycohydrolase (DraG), but the means by which the activities of these enzymes are regulated are unknown. We have investigated the role of the PII proteins (GlnB and GlnZ), the ammonia channel protein AmtB and the cellular localization of DraG in the regulation of the NifH‐modification process in Azospirillum brasilense. GlnB, GlnZ and DraG were all membrane‐associated after an ammonium shock, and both this membrane sequestration and ADP‐ribosylation of NifH were defective in an amtB mutant. We now propose a model in which membrane association of DraG after an ammonium shock creates a physical separation from its cytoplasmic substrate NifH thereby inhibiting ADP‐ribosyl‐removal. Our observations identify a novel role for an ammonia channel (Amt) protein in the regulation of bacterial nitrogen metabolism by mediating membrane sequestration of a protein other than a PII family member. They also suggest a model for control of ADP‐ribosylation that is likely to be applicable to all diazotrophs that exhibit such post‐translational regulation of nitrogenase.
doi_str_mv 10.1111/j.1365-2958.2005.04944.x
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_67578732</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>17458392</sourcerecordid><originalsourceid>FETCH-LOGICAL-c5054-5808e0e345c3551937e3880618dcca29f6ebe0d5d85051009560bec73a93d4ea3</originalsourceid><addsrcrecordid>eNqNkcFu1DAQhi0EokvhFZCFBLcEO45j-8Bh20Kp1AoOIHGzHHtSeZU4i52ILieOHHlGngSnu2olLuCLR5pvfv-eHyFMSUnzeb0pKWt4USkuy4oQXpJa1XV58wCt7hoP0YooTgomqy9H6ElKG0IoIw17jI5ow7hiTK7Qz_XZx98_fkXfjmnXm8mPAY8ddj74KY7XEEwCHMHNdloqH_D6-5i2Pvq-nwfcRpN8D2Fppcxdz1kDHG53eD1MJ1nZwRaCgzDhAYaMB8AJvs6Qpnj32lk050_Ro870CZ4d7mP0-d3bT6fvi8sP5xen68vCcsLrgksigQCruWWcU8UEMClJQ6Wz1lSqa6AF4riTGackb6AhLVjBjGKuBsOO0au97jaOtzb04JOFvs_OxjnpRnAhBav-CVJRc8nUAr74C9yMcwz5E5qqhldU8iZDcg_ZOKYUodPb6AcTd5oSvWSqN3qJTi_R6SVTfZupvsmjzw_6czuAux88hJiBlwfAJGv6Li_Z-nTPiVrIStDMvdlz33Jku_82oK-uLpaK_QHA_MAa</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>196521856</pqid></control><display><type>article</type><title>ADP‐ribosylation of dinitrogenase reductase in Azospirillum brasilense is regulated by AmtB‐dependent membrane sequestration of DraG</title><source>Wiley</source><creator>Huergo, Luciano F. ; Souza, Emanuel M. ; Araujo, Mariana S. ; Pedrosa, Fábio O. ; Chubatsu, Leda S. ; Steffens, Maria B. R. ; Merrick, Mike</creator><creatorcontrib>Huergo, Luciano F. ; Souza, Emanuel M. ; Araujo, Mariana S. ; Pedrosa, Fábio O. ; Chubatsu, Leda S. ; Steffens, Maria B. R. ; Merrick, Mike</creatorcontrib><description>Summary Nitrogen fixation in some diazotrophic bacteria is regulated by mono‐ADP‐ribosylation of dinitrogenase reductase (NifH) that occurs in response to addition of ammonium to the extracellular medium. This process is mediated by dinitrogenase reductase ADP‐ribosyltransferase (DraT) and reversed by dinitrogenase reductase glycohydrolase (DraG), but the means by which the activities of these enzymes are regulated are unknown. We have investigated the role of the PII proteins (GlnB and GlnZ), the ammonia channel protein AmtB and the cellular localization of DraG in the regulation of the NifH‐modification process in Azospirillum brasilense. GlnB, GlnZ and DraG were all membrane‐associated after an ammonium shock, and both this membrane sequestration and ADP‐ribosylation of NifH were defective in an amtB mutant. We now propose a model in which membrane association of DraG after an ammonium shock creates a physical separation from its cytoplasmic substrate NifH thereby inhibiting ADP‐ribosyl‐removal. Our observations identify a novel role for an ammonia channel (Amt) protein in the regulation of bacterial nitrogen metabolism by mediating membrane sequestration of a protein other than a PII family member. They also suggest a model for control of ADP‐ribosylation that is likely to be applicable to all diazotrophs that exhibit such post‐translational regulation of nitrogenase.</description><identifier>ISSN: 0950-382X</identifier><identifier>EISSN: 1365-2958</identifier><identifier>DOI: 10.1111/j.1365-2958.2005.04944.x</identifier><identifier>PMID: 16359338</identifier><language>eng</language><publisher>Oxford, UK: Blackwell Science Ltd</publisher><subject>Adenosine Diphosphate Ribose - metabolism ; Ammonia ; Azospirillum brasilense ; Azospirillum brasilense - cytology ; Azospirillum brasilense - enzymology ; Bacteria ; Bacterial Proteins - genetics ; Bacterial Proteins - metabolism ; Bacteriology ; Biochemistry ; Biological and medical sciences ; Cation Transport Proteins - genetics ; Cation Transport Proteins - metabolism ; Cell Membrane - enzymology ; Enzymes ; Fundamental and applied biological sciences. Psychology ; Gene Expression Regulation, Bacterial ; Glutamate-Ammonia Ligase - genetics ; Glutamate-Ammonia Ligase - metabolism ; Membrane separation ; Microbiology ; Miscellaneous ; Molecular biology ; N-Glycosyl Hydrolases - genetics ; N-Glycosyl Hydrolases - metabolism ; Nitrogen ; Oxidoreductases - genetics ; Oxidoreductases - metabolism ; PII Nitrogen Regulatory Proteins - genetics ; PII Nitrogen Regulatory Proteins - metabolism ; Protein Processing, Post-Translational ; Quaternary Ammonium Compounds - chemistry ; Quaternary Ammonium Compounds - metabolism</subject><ispartof>Molecular microbiology, 2006-01, Vol.59 (1), p.326-337</ispartof><rights>2006 INIST-CNRS</rights><rights>Copyright Blackwell Publishing Jan 2006</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c5054-5808e0e345c3551937e3880618dcca29f6ebe0d5d85051009560bec73a93d4ea3</citedby><cites>FETCH-LOGICAL-c5054-5808e0e345c3551937e3880618dcca29f6ebe0d5d85051009560bec73a93d4ea3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,4024,27923,27924,27925</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=17478271$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/16359338$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Huergo, Luciano F.</creatorcontrib><creatorcontrib>Souza, Emanuel M.</creatorcontrib><creatorcontrib>Araujo, Mariana S.</creatorcontrib><creatorcontrib>Pedrosa, Fábio O.</creatorcontrib><creatorcontrib>Chubatsu, Leda S.</creatorcontrib><creatorcontrib>Steffens, Maria B. R.</creatorcontrib><creatorcontrib>Merrick, Mike</creatorcontrib><title>ADP‐ribosylation of dinitrogenase reductase in Azospirillum brasilense is regulated by AmtB‐dependent membrane sequestration of DraG</title><title>Molecular microbiology</title><addtitle>Mol Microbiol</addtitle><description>Summary Nitrogen fixation in some diazotrophic bacteria is regulated by mono‐ADP‐ribosylation of dinitrogenase reductase (NifH) that occurs in response to addition of ammonium to the extracellular medium. This process is mediated by dinitrogenase reductase ADP‐ribosyltransferase (DraT) and reversed by dinitrogenase reductase glycohydrolase (DraG), but the means by which the activities of these enzymes are regulated are unknown. We have investigated the role of the PII proteins (GlnB and GlnZ), the ammonia channel protein AmtB and the cellular localization of DraG in the regulation of the NifH‐modification process in Azospirillum brasilense. GlnB, GlnZ and DraG were all membrane‐associated after an ammonium shock, and both this membrane sequestration and ADP‐ribosylation of NifH were defective in an amtB mutant. We now propose a model in which membrane association of DraG after an ammonium shock creates a physical separation from its cytoplasmic substrate NifH thereby inhibiting ADP‐ribosyl‐removal. Our observations identify a novel role for an ammonia channel (Amt) protein in the regulation of bacterial nitrogen metabolism by mediating membrane sequestration of a protein other than a PII family member. They also suggest a model for control of ADP‐ribosylation that is likely to be applicable to all diazotrophs that exhibit such post‐translational regulation of nitrogenase.</description><subject>Adenosine Diphosphate Ribose - metabolism</subject><subject>Ammonia</subject><subject>Azospirillum brasilense</subject><subject>Azospirillum brasilense - cytology</subject><subject>Azospirillum brasilense - enzymology</subject><subject>Bacteria</subject><subject>Bacterial Proteins - genetics</subject><subject>Bacterial Proteins - metabolism</subject><subject>Bacteriology</subject><subject>Biochemistry</subject><subject>Biological and medical sciences</subject><subject>Cation Transport Proteins - genetics</subject><subject>Cation Transport Proteins - metabolism</subject><subject>Cell Membrane - enzymology</subject><subject>Enzymes</subject><subject>Fundamental and applied biological sciences. Psychology</subject><subject>Gene Expression Regulation, Bacterial</subject><subject>Glutamate-Ammonia Ligase - genetics</subject><subject>Glutamate-Ammonia Ligase - metabolism</subject><subject>Membrane separation</subject><subject>Microbiology</subject><subject>Miscellaneous</subject><subject>Molecular biology</subject><subject>N-Glycosyl Hydrolases - genetics</subject><subject>N-Glycosyl Hydrolases - metabolism</subject><subject>Nitrogen</subject><subject>Oxidoreductases - genetics</subject><subject>Oxidoreductases - metabolism</subject><subject>PII Nitrogen Regulatory Proteins - genetics</subject><subject>PII Nitrogen Regulatory Proteins - metabolism</subject><subject>Protein Processing, Post-Translational</subject><subject>Quaternary Ammonium Compounds - chemistry</subject><subject>Quaternary Ammonium Compounds - metabolism</subject><issn>0950-382X</issn><issn>1365-2958</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2006</creationdate><recordtype>article</recordtype><recordid>eNqNkcFu1DAQhi0EokvhFZCFBLcEO45j-8Bh20Kp1AoOIHGzHHtSeZU4i52ILieOHHlGngSnu2olLuCLR5pvfv-eHyFMSUnzeb0pKWt4USkuy4oQXpJa1XV58wCt7hoP0YooTgomqy9H6ElKG0IoIw17jI5ow7hiTK7Qz_XZx98_fkXfjmnXm8mPAY8ddj74KY7XEEwCHMHNdloqH_D6-5i2Pvq-nwfcRpN8D2Fppcxdz1kDHG53eD1MJ1nZwRaCgzDhAYaMB8AJvs6Qpnj32lk050_Ro870CZ4d7mP0-d3bT6fvi8sP5xen68vCcsLrgksigQCruWWcU8UEMClJQ6Wz1lSqa6AF4riTGackb6AhLVjBjGKuBsOO0au97jaOtzb04JOFvs_OxjnpRnAhBav-CVJRc8nUAr74C9yMcwz5E5qqhldU8iZDcg_ZOKYUodPb6AcTd5oSvWSqN3qJTi_R6SVTfZupvsmjzw_6czuAux88hJiBlwfAJGv6Li_Z-nTPiVrIStDMvdlz33Jku_82oK-uLpaK_QHA_MAa</recordid><startdate>200601</startdate><enddate>200601</enddate><creator>Huergo, Luciano F.</creator><creator>Souza, Emanuel M.</creator><creator>Araujo, Mariana S.</creator><creator>Pedrosa, Fábio O.</creator><creator>Chubatsu, Leda S.</creator><creator>Steffens, Maria B. R.</creator><creator>Merrick, Mike</creator><general>Blackwell Science Ltd</general><general>Blackwell Science</general><general>Blackwell Publishing Ltd</general><scope>IQODW</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QL</scope><scope>7QP</scope><scope>7QR</scope><scope>7TK</scope><scope>7TM</scope><scope>7U9</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>H94</scope><scope>M7N</scope><scope>P64</scope><scope>RC3</scope><scope>7X8</scope></search><sort><creationdate>200601</creationdate><title>ADP‐ribosylation of dinitrogenase reductase in Azospirillum brasilense is regulated by AmtB‐dependent membrane sequestration of DraG</title><author>Huergo, Luciano F. ; Souza, Emanuel M. ; Araujo, Mariana S. ; Pedrosa, Fábio O. ; Chubatsu, Leda S. ; Steffens, Maria B. R. ; Merrick, Mike</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c5054-5808e0e345c3551937e3880618dcca29f6ebe0d5d85051009560bec73a93d4ea3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2006</creationdate><topic>Adenosine Diphosphate Ribose - metabolism</topic><topic>Ammonia</topic><topic>Azospirillum brasilense</topic><topic>Azospirillum brasilense - cytology</topic><topic>Azospirillum brasilense - enzymology</topic><topic>Bacteria</topic><topic>Bacterial Proteins - genetics</topic><topic>Bacterial Proteins - metabolism</topic><topic>Bacteriology</topic><topic>Biochemistry</topic><topic>Biological and medical sciences</topic><topic>Cation Transport Proteins - genetics</topic><topic>Cation Transport Proteins - metabolism</topic><topic>Cell Membrane - enzymology</topic><topic>Enzymes</topic><topic>Fundamental and applied biological sciences. Psychology</topic><topic>Gene Expression Regulation, Bacterial</topic><topic>Glutamate-Ammonia Ligase - genetics</topic><topic>Glutamate-Ammonia Ligase - metabolism</topic><topic>Membrane separation</topic><topic>Microbiology</topic><topic>Miscellaneous</topic><topic>Molecular biology</topic><topic>N-Glycosyl Hydrolases - genetics</topic><topic>N-Glycosyl Hydrolases - metabolism</topic><topic>Nitrogen</topic><topic>Oxidoreductases - genetics</topic><topic>Oxidoreductases - metabolism</topic><topic>PII Nitrogen Regulatory Proteins - genetics</topic><topic>PII Nitrogen Regulatory Proteins - metabolism</topic><topic>Protein Processing, Post-Translational</topic><topic>Quaternary Ammonium Compounds - chemistry</topic><topic>Quaternary Ammonium Compounds - metabolism</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Huergo, Luciano F.</creatorcontrib><creatorcontrib>Souza, Emanuel M.</creatorcontrib><creatorcontrib>Araujo, Mariana S.</creatorcontrib><creatorcontrib>Pedrosa, Fábio O.</creatorcontrib><creatorcontrib>Chubatsu, Leda S.</creatorcontrib><creatorcontrib>Steffens, Maria B. R.</creatorcontrib><creatorcontrib>Merrick, Mike</creatorcontrib><collection>Pascal-Francis</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>Molecular microbiology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Huergo, Luciano F.</au><au>Souza, Emanuel M.</au><au>Araujo, Mariana S.</au><au>Pedrosa, Fábio O.</au><au>Chubatsu, Leda S.</au><au>Steffens, Maria B. R.</au><au>Merrick, Mike</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>ADP‐ribosylation of dinitrogenase reductase in Azospirillum brasilense is regulated by AmtB‐dependent membrane sequestration of DraG</atitle><jtitle>Molecular microbiology</jtitle><addtitle>Mol Microbiol</addtitle><date>2006-01</date><risdate>2006</risdate><volume>59</volume><issue>1</issue><spage>326</spage><epage>337</epage><pages>326-337</pages><issn>0950-382X</issn><eissn>1365-2958</eissn><abstract>Summary Nitrogen fixation in some diazotrophic bacteria is regulated by mono‐ADP‐ribosylation of dinitrogenase reductase (NifH) that occurs in response to addition of ammonium to the extracellular medium. This process is mediated by dinitrogenase reductase ADP‐ribosyltransferase (DraT) and reversed by dinitrogenase reductase glycohydrolase (DraG), but the means by which the activities of these enzymes are regulated are unknown. We have investigated the role of the PII proteins (GlnB and GlnZ), the ammonia channel protein AmtB and the cellular localization of DraG in the regulation of the NifH‐modification process in Azospirillum brasilense. GlnB, GlnZ and DraG were all membrane‐associated after an ammonium shock, and both this membrane sequestration and ADP‐ribosylation of NifH were defective in an amtB mutant. We now propose a model in which membrane association of DraG after an ammonium shock creates a physical separation from its cytoplasmic substrate NifH thereby inhibiting ADP‐ribosyl‐removal. Our observations identify a novel role for an ammonia channel (Amt) protein in the regulation of bacterial nitrogen metabolism by mediating membrane sequestration of a protein other than a PII family member. They also suggest a model for control of ADP‐ribosylation that is likely to be applicable to all diazotrophs that exhibit such post‐translational regulation of nitrogenase.</abstract><cop>Oxford, UK</cop><pub>Blackwell Science Ltd</pub><pmid>16359338</pmid><doi>10.1111/j.1365-2958.2005.04944.x</doi><tpages>12</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0950-382X
ispartof Molecular microbiology, 2006-01, Vol.59 (1), p.326-337
issn 0950-382X
1365-2958
language eng
recordid cdi_proquest_miscellaneous_67578732
source Wiley
subjects Adenosine Diphosphate Ribose - metabolism
Ammonia
Azospirillum brasilense
Azospirillum brasilense - cytology
Azospirillum brasilense - enzymology
Bacteria
Bacterial Proteins - genetics
Bacterial Proteins - metabolism
Bacteriology
Biochemistry
Biological and medical sciences
Cation Transport Proteins - genetics
Cation Transport Proteins - metabolism
Cell Membrane - enzymology
Enzymes
Fundamental and applied biological sciences. Psychology
Gene Expression Regulation, Bacterial
Glutamate-Ammonia Ligase - genetics
Glutamate-Ammonia Ligase - metabolism
Membrane separation
Microbiology
Miscellaneous
Molecular biology
N-Glycosyl Hydrolases - genetics
N-Glycosyl Hydrolases - metabolism
Nitrogen
Oxidoreductases - genetics
Oxidoreductases - metabolism
PII Nitrogen Regulatory Proteins - genetics
PII Nitrogen Regulatory Proteins - metabolism
Protein Processing, Post-Translational
Quaternary Ammonium Compounds - chemistry
Quaternary Ammonium Compounds - metabolism
title ADP‐ribosylation of dinitrogenase reductase in Azospirillum brasilense is regulated by AmtB‐dependent membrane sequestration of DraG
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-30T22%3A02%3A35IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=ADP%E2%80%90ribosylation%20of%20dinitrogenase%20reductase%20in%20Azospirillum%20brasilense%20is%20regulated%20by%20AmtB%E2%80%90dependent%20membrane%20sequestration%20of%20DraG&rft.jtitle=Molecular%20microbiology&rft.au=Huergo,%20Luciano%20F.&rft.date=2006-01&rft.volume=59&rft.issue=1&rft.spage=326&rft.epage=337&rft.pages=326-337&rft.issn=0950-382X&rft.eissn=1365-2958&rft_id=info:doi/10.1111/j.1365-2958.2005.04944.x&rft_dat=%3Cproquest_cross%3E17458392%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c5054-5808e0e345c3551937e3880618dcca29f6ebe0d5d85051009560bec73a93d4ea3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=196521856&rft_id=info:pmid/16359338&rfr_iscdi=true