Loading…
Vitamin C deficiency in early postnatal life impairs spatial memory and reduces the number of hippocampal neurons in guinea pigs
BACKGROUND: The neonatal brain is particularly vulnerable to imbalances in redox homeostasis because of rapid growth and immature antioxidant systems. Vitamin C has been shown to have a key function in the brain, and during states of deficiency it is able to retain higher concentrations of vitamin C...
Saved in:
Published in: | The American journal of clinical nutrition 2009-09, Vol.90 (3), p.540-546 |
---|---|
Main Authors: | , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | BACKGROUND: The neonatal brain is particularly vulnerable to imbalances in redox homeostasis because of rapid growth and immature antioxidant systems. Vitamin C has been shown to have a key function in the brain, and during states of deficiency it is able to retain higher concentrations of vitamin C than other organs. However, because neurons maintain one of the highest intracellular concentrations of vitamin C in the organism, the brain may still be more sensitive to deficiency despite these preventive measures. OBJECTIVE: The objective was to study the potential link between chronic vitamin C deficiency and neuronal damage in newborn guinea pigs. DESIGN: Thirty 6- to 7-d-old guinea pigs were randomly assigned to 2 groups to receive either a vitamin C-sufficient diet or the same diet containing a low concentration of vitamin C (but adequate to prevent scurvy) for 2 mo. Spatial memory was assessed by the Morris Water Maze, and hippocampal neuron numbers were quantified by stereologic techniques. RESULTS: The results showed a reduction in spatial memory (P < 0.05) and an increased time to first platform hit (P < 0.05) in deficient animals compared with controls. The deficient animals had a lower total number of neurons in hippocampal subdivisions (dentate gyrus, cornu ammonis 1, and cornu ammonis 2-3) than did the normal controls (P < 0.05). CONCLUSIONS: Our data show that vitamin C deficiency in early postnatal life results in impaired neuronal development and a functional decrease in spatial memory in guinea pigs. We speculate that this unrecognized effect of vitamin C deficiency may have clinical implications for high-risk individuals, such as in children born from vitamin C-deficient mothers. |
---|---|
ISSN: | 0002-9165 1938-3207 |
DOI: | 10.3945/ajcn.2009.27954 |