Loading…
Modeling oil spill trajectory in coastal waters based on fractional Brownian motion
This paper proposes a numerical method to simulate oil spill trajectories, which are affected by the combination of advection, turbulent diffusion and mechanical spreading process, based on a particle tracking algorithm. Recent studies have shown that the trajectories of drifters on the ocean surfac...
Saved in:
Published in: | Marine pollution bulletin 2009-09, Vol.58 (9), p.1339-1346 |
---|---|
Main Authors: | , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c492t-ba55c9a161312b73d0fb68a95e3b6c3b5ee8c1b37616244ad46ae6824310986f3 |
---|---|
cites | cdi_FETCH-LOGICAL-c492t-ba55c9a161312b73d0fb68a95e3b6c3b5ee8c1b37616244ad46ae6824310986f3 |
container_end_page | 1346 |
container_issue | 9 |
container_start_page | 1339 |
container_title | Marine pollution bulletin |
container_volume | 58 |
creator | Guo, W.J. Wang, Y.X. Xie, M.X. Cui, Y.J. |
description | This paper proposes a numerical method to simulate oil spill trajectories, which are affected by the combination of advection, turbulent diffusion and mechanical spreading process, based on a particle tracking algorithm. Recent studies have shown that the trajectories of drifters on the ocean surface have a fractal structure that is far from being described using ordinary Brownian motion. Thus, in modeling the diffusion process, a discrete method has been employed for the generation of fractional Brownian motion (fBm) to illustrate superdiffusive transport. The algorithm is implemented to predict oil slick trajectories following the “Arteaga” oil spill accident that occurred near the Dalian coastal region in 2005. When compared with the observed data and the results of traditional diffusion modeling, the numerical results based on the fBm model are encouraging. |
doi_str_mv | 10.1016/j.marpolbul.2009.04.026 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_67612373</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0025326X09001805</els_id><sourcerecordid>20789092</sourcerecordid><originalsourceid>FETCH-LOGICAL-c492t-ba55c9a161312b73d0fb68a95e3b6c3b5ee8c1b37616244ad46ae6824310986f3</originalsourceid><addsrcrecordid>eNqN0U1vFCEYwHFiNHatfgXlYm8zPrwMDMfaWGtS00M18UaAYQwbFlaYtem3l81u2uN6IoHfAyR_hD4Q6AkQ8Wndb0zZ5mh3sacAqgfeAxUv0IqMUnWMCfYSrQDo0DEqfp2hN7WuAUBSSV6jM6K4lFyIFbr_nicfQ_qNc4i4bkOMeClm7d2SyyMOCbts6mIifjCLLxVbU_2Ec8JzMW4JObWjzyU_pGAS3uT9zlv0ajax-nfH9Rz9vP7y4-qmu737-u3q8rZzXNGls2YYnDJEEEaolWyC2YrRqMEzKxyzg_ejI5ZJQQTl3ExcGC9GyhkBNYqZnaOLw73bkv_sfF30JlTnYzTJ513Vok1SJtlJyHiTCvhJSEE2Run_wFGB2kN5gK7kWouf9baE1u5RE9D7lHqtn1LqfUoNXLeUbfL98Ymd3fjpee7YroGPR2CqM7H1SC7UJ0cpEAAyNHd5cL61-Bt80dUFn5yfQmmZ9ZTDyc_8A6A1wJw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>20789092</pqid></control><display><type>article</type><title>Modeling oil spill trajectory in coastal waters based on fractional Brownian motion</title><source>ScienceDirect Freedom Collection 2022-2024</source><creator>Guo, W.J. ; Wang, Y.X. ; Xie, M.X. ; Cui, Y.J.</creator><creatorcontrib>Guo, W.J. ; Wang, Y.X. ; Xie, M.X. ; Cui, Y.J.</creatorcontrib><description>This paper proposes a numerical method to simulate oil spill trajectories, which are affected by the combination of advection, turbulent diffusion and mechanical spreading process, based on a particle tracking algorithm. Recent studies have shown that the trajectories of drifters on the ocean surface have a fractal structure that is far from being described using ordinary Brownian motion. Thus, in modeling the diffusion process, a discrete method has been employed for the generation of fractional Brownian motion (fBm) to illustrate superdiffusive transport. The algorithm is implemented to predict oil slick trajectories following the “Arteaga” oil spill accident that occurred near the Dalian coastal region in 2005. When compared with the observed data and the results of traditional diffusion modeling, the numerical results based on the fBm model are encouraging.</description><identifier>ISSN: 0025-326X</identifier><identifier>EISSN: 1879-3363</identifier><identifier>DOI: 10.1016/j.marpolbul.2009.04.026</identifier><identifier>PMID: 19477466</identifier><identifier>CODEN: MPNBAZ</identifier><language>eng</language><publisher>Kidlington: Elsevier Ltd</publisher><subject>Applied sciences ; Earth sciences ; Earth, ocean, space ; Engineering and environment geology. Geothermics ; Exact sciences and technology ; Fractional Brownian motion ; Kinetics ; Marine ; Models, Chemical ; Natural water pollution ; Non-Fickian diffusion ; Oil spill ; Particle tracking ; Petroleum - analysis ; Pollution ; Pollution, environment geology ; Seawater - chemistry ; Seawaters, estuaries ; Spill trajectory ; Water Movements ; Water treatment and pollution ; Wind</subject><ispartof>Marine pollution bulletin, 2009-09, Vol.58 (9), p.1339-1346</ispartof><rights>2009 Elsevier Ltd</rights><rights>2015 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c492t-ba55c9a161312b73d0fb68a95e3b6c3b5ee8c1b37616244ad46ae6824310986f3</citedby><cites>FETCH-LOGICAL-c492t-ba55c9a161312b73d0fb68a95e3b6c3b5ee8c1b37616244ad46ae6824310986f3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=22010015$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/19477466$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Guo, W.J.</creatorcontrib><creatorcontrib>Wang, Y.X.</creatorcontrib><creatorcontrib>Xie, M.X.</creatorcontrib><creatorcontrib>Cui, Y.J.</creatorcontrib><title>Modeling oil spill trajectory in coastal waters based on fractional Brownian motion</title><title>Marine pollution bulletin</title><addtitle>Mar Pollut Bull</addtitle><description>This paper proposes a numerical method to simulate oil spill trajectories, which are affected by the combination of advection, turbulent diffusion and mechanical spreading process, based on a particle tracking algorithm. Recent studies have shown that the trajectories of drifters on the ocean surface have a fractal structure that is far from being described using ordinary Brownian motion. Thus, in modeling the diffusion process, a discrete method has been employed for the generation of fractional Brownian motion (fBm) to illustrate superdiffusive transport. The algorithm is implemented to predict oil slick trajectories following the “Arteaga” oil spill accident that occurred near the Dalian coastal region in 2005. When compared with the observed data and the results of traditional diffusion modeling, the numerical results based on the fBm model are encouraging.</description><subject>Applied sciences</subject><subject>Earth sciences</subject><subject>Earth, ocean, space</subject><subject>Engineering and environment geology. Geothermics</subject><subject>Exact sciences and technology</subject><subject>Fractional Brownian motion</subject><subject>Kinetics</subject><subject>Marine</subject><subject>Models, Chemical</subject><subject>Natural water pollution</subject><subject>Non-Fickian diffusion</subject><subject>Oil spill</subject><subject>Particle tracking</subject><subject>Petroleum - analysis</subject><subject>Pollution</subject><subject>Pollution, environment geology</subject><subject>Seawater - chemistry</subject><subject>Seawaters, estuaries</subject><subject>Spill trajectory</subject><subject>Water Movements</subject><subject>Water treatment and pollution</subject><subject>Wind</subject><issn>0025-326X</issn><issn>1879-3363</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2009</creationdate><recordtype>article</recordtype><recordid>eNqN0U1vFCEYwHFiNHatfgXlYm8zPrwMDMfaWGtS00M18UaAYQwbFlaYtem3l81u2uN6IoHfAyR_hD4Q6AkQ8Wndb0zZ5mh3sacAqgfeAxUv0IqMUnWMCfYSrQDo0DEqfp2hN7WuAUBSSV6jM6K4lFyIFbr_nicfQ_qNc4i4bkOMeClm7d2SyyMOCbts6mIifjCLLxVbU_2Ec8JzMW4JObWjzyU_pGAS3uT9zlv0ajax-nfH9Rz9vP7y4-qmu737-u3q8rZzXNGls2YYnDJEEEaolWyC2YrRqMEzKxyzg_ejI5ZJQQTl3ExcGC9GyhkBNYqZnaOLw73bkv_sfF30JlTnYzTJ513Vok1SJtlJyHiTCvhJSEE2Run_wFGB2kN5gK7kWouf9baE1u5RE9D7lHqtn1LqfUoNXLeUbfL98Ymd3fjpee7YroGPR2CqM7H1SC7UJ0cpEAAyNHd5cL61-Bt80dUFn5yfQmmZ9ZTDyc_8A6A1wJw</recordid><startdate>20090901</startdate><enddate>20090901</enddate><creator>Guo, W.J.</creator><creator>Wang, Y.X.</creator><creator>Xie, M.X.</creator><creator>Cui, Y.J.</creator><general>Elsevier Ltd</general><general>Elsevier</general><scope>IQODW</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QH</scope><scope>7ST</scope><scope>7TG</scope><scope>7TN</scope><scope>7U6</scope><scope>7UA</scope><scope>C1K</scope><scope>F1W</scope><scope>H97</scope><scope>KL.</scope><scope>L.G</scope><scope>SOI</scope><scope>7TV</scope><scope>8FD</scope><scope>FR3</scope><scope>KR7</scope><scope>7X8</scope></search><sort><creationdate>20090901</creationdate><title>Modeling oil spill trajectory in coastal waters based on fractional Brownian motion</title><author>Guo, W.J. ; Wang, Y.X. ; Xie, M.X. ; Cui, Y.J.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c492t-ba55c9a161312b73d0fb68a95e3b6c3b5ee8c1b37616244ad46ae6824310986f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2009</creationdate><topic>Applied sciences</topic><topic>Earth sciences</topic><topic>Earth, ocean, space</topic><topic>Engineering and environment geology. Geothermics</topic><topic>Exact sciences and technology</topic><topic>Fractional Brownian motion</topic><topic>Kinetics</topic><topic>Marine</topic><topic>Models, Chemical</topic><topic>Natural water pollution</topic><topic>Non-Fickian diffusion</topic><topic>Oil spill</topic><topic>Particle tracking</topic><topic>Petroleum - analysis</topic><topic>Pollution</topic><topic>Pollution, environment geology</topic><topic>Seawater - chemistry</topic><topic>Seawaters, estuaries</topic><topic>Spill trajectory</topic><topic>Water Movements</topic><topic>Water treatment and pollution</topic><topic>Wind</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Guo, W.J.</creatorcontrib><creatorcontrib>Wang, Y.X.</creatorcontrib><creatorcontrib>Xie, M.X.</creatorcontrib><creatorcontrib>Cui, Y.J.</creatorcontrib><collection>Pascal-Francis</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Aqualine</collection><collection>Environment Abstracts</collection><collection>Meteorological & Geoastrophysical Abstracts</collection><collection>Oceanic Abstracts</collection><collection>Sustainability Science Abstracts</collection><collection>Water Resources Abstracts</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) 3: Aquatic Pollution & Environmental Quality</collection><collection>Meteorological & Geoastrophysical Abstracts - Academic</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) Professional</collection><collection>Environment Abstracts</collection><collection>Pollution Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Civil Engineering Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>Marine pollution bulletin</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Guo, W.J.</au><au>Wang, Y.X.</au><au>Xie, M.X.</au><au>Cui, Y.J.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Modeling oil spill trajectory in coastal waters based on fractional Brownian motion</atitle><jtitle>Marine pollution bulletin</jtitle><addtitle>Mar Pollut Bull</addtitle><date>2009-09-01</date><risdate>2009</risdate><volume>58</volume><issue>9</issue><spage>1339</spage><epage>1346</epage><pages>1339-1346</pages><issn>0025-326X</issn><eissn>1879-3363</eissn><coden>MPNBAZ</coden><abstract>This paper proposes a numerical method to simulate oil spill trajectories, which are affected by the combination of advection, turbulent diffusion and mechanical spreading process, based on a particle tracking algorithm. Recent studies have shown that the trajectories of drifters on the ocean surface have a fractal structure that is far from being described using ordinary Brownian motion. Thus, in modeling the diffusion process, a discrete method has been employed for the generation of fractional Brownian motion (fBm) to illustrate superdiffusive transport. The algorithm is implemented to predict oil slick trajectories following the “Arteaga” oil spill accident that occurred near the Dalian coastal region in 2005. When compared with the observed data and the results of traditional diffusion modeling, the numerical results based on the fBm model are encouraging.</abstract><cop>Kidlington</cop><pub>Elsevier Ltd</pub><pmid>19477466</pmid><doi>10.1016/j.marpolbul.2009.04.026</doi><tpages>8</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0025-326X |
ispartof | Marine pollution bulletin, 2009-09, Vol.58 (9), p.1339-1346 |
issn | 0025-326X 1879-3363 |
language | eng |
recordid | cdi_proquest_miscellaneous_67612373 |
source | ScienceDirect Freedom Collection 2022-2024 |
subjects | Applied sciences Earth sciences Earth, ocean, space Engineering and environment geology. Geothermics Exact sciences and technology Fractional Brownian motion Kinetics Marine Models, Chemical Natural water pollution Non-Fickian diffusion Oil spill Particle tracking Petroleum - analysis Pollution Pollution, environment geology Seawater - chemistry Seawaters, estuaries Spill trajectory Water Movements Water treatment and pollution Wind |
title | Modeling oil spill trajectory in coastal waters based on fractional Brownian motion |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-04T17%3A35%3A09IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Modeling%20oil%20spill%20trajectory%20in%20coastal%20waters%20based%20on%20fractional%20Brownian%20motion&rft.jtitle=Marine%20pollution%20bulletin&rft.au=Guo,%20W.J.&rft.date=2009-09-01&rft.volume=58&rft.issue=9&rft.spage=1339&rft.epage=1346&rft.pages=1339-1346&rft.issn=0025-326X&rft.eissn=1879-3363&rft.coden=MPNBAZ&rft_id=info:doi/10.1016/j.marpolbul.2009.04.026&rft_dat=%3Cproquest_cross%3E20789092%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c492t-ba55c9a161312b73d0fb68a95e3b6c3b5ee8c1b37616244ad46ae6824310986f3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=20789092&rft_id=info:pmid/19477466&rfr_iscdi=true |