Loading…

Modeling oil spill trajectory in coastal waters based on fractional Brownian motion

This paper proposes a numerical method to simulate oil spill trajectories, which are affected by the combination of advection, turbulent diffusion and mechanical spreading process, based on a particle tracking algorithm. Recent studies have shown that the trajectories of drifters on the ocean surfac...

Full description

Saved in:
Bibliographic Details
Published in:Marine pollution bulletin 2009-09, Vol.58 (9), p.1339-1346
Main Authors: Guo, W.J., Wang, Y.X., Xie, M.X., Cui, Y.J.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c492t-ba55c9a161312b73d0fb68a95e3b6c3b5ee8c1b37616244ad46ae6824310986f3
cites cdi_FETCH-LOGICAL-c492t-ba55c9a161312b73d0fb68a95e3b6c3b5ee8c1b37616244ad46ae6824310986f3
container_end_page 1346
container_issue 9
container_start_page 1339
container_title Marine pollution bulletin
container_volume 58
creator Guo, W.J.
Wang, Y.X.
Xie, M.X.
Cui, Y.J.
description This paper proposes a numerical method to simulate oil spill trajectories, which are affected by the combination of advection, turbulent diffusion and mechanical spreading process, based on a particle tracking algorithm. Recent studies have shown that the trajectories of drifters on the ocean surface have a fractal structure that is far from being described using ordinary Brownian motion. Thus, in modeling the diffusion process, a discrete method has been employed for the generation of fractional Brownian motion (fBm) to illustrate superdiffusive transport. The algorithm is implemented to predict oil slick trajectories following the “Arteaga” oil spill accident that occurred near the Dalian coastal region in 2005. When compared with the observed data and the results of traditional diffusion modeling, the numerical results based on the fBm model are encouraging.
doi_str_mv 10.1016/j.marpolbul.2009.04.026
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_67612373</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0025326X09001805</els_id><sourcerecordid>20789092</sourcerecordid><originalsourceid>FETCH-LOGICAL-c492t-ba55c9a161312b73d0fb68a95e3b6c3b5ee8c1b37616244ad46ae6824310986f3</originalsourceid><addsrcrecordid>eNqN0U1vFCEYwHFiNHatfgXlYm8zPrwMDMfaWGtS00M18UaAYQwbFlaYtem3l81u2uN6IoHfAyR_hD4Q6AkQ8Wndb0zZ5mh3sacAqgfeAxUv0IqMUnWMCfYSrQDo0DEqfp2hN7WuAUBSSV6jM6K4lFyIFbr_nicfQ_qNc4i4bkOMeClm7d2SyyMOCbts6mIifjCLLxVbU_2Ec8JzMW4JObWjzyU_pGAS3uT9zlv0ajax-nfH9Rz9vP7y4-qmu737-u3q8rZzXNGls2YYnDJEEEaolWyC2YrRqMEzKxyzg_ejI5ZJQQTl3ExcGC9GyhkBNYqZnaOLw73bkv_sfF30JlTnYzTJ513Vok1SJtlJyHiTCvhJSEE2Run_wFGB2kN5gK7kWouf9baE1u5RE9D7lHqtn1LqfUoNXLeUbfL98Ymd3fjpee7YroGPR2CqM7H1SC7UJ0cpEAAyNHd5cL61-Bt80dUFn5yfQmmZ9ZTDyc_8A6A1wJw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>20789092</pqid></control><display><type>article</type><title>Modeling oil spill trajectory in coastal waters based on fractional Brownian motion</title><source>ScienceDirect Freedom Collection 2022-2024</source><creator>Guo, W.J. ; Wang, Y.X. ; Xie, M.X. ; Cui, Y.J.</creator><creatorcontrib>Guo, W.J. ; Wang, Y.X. ; Xie, M.X. ; Cui, Y.J.</creatorcontrib><description>This paper proposes a numerical method to simulate oil spill trajectories, which are affected by the combination of advection, turbulent diffusion and mechanical spreading process, based on a particle tracking algorithm. Recent studies have shown that the trajectories of drifters on the ocean surface have a fractal structure that is far from being described using ordinary Brownian motion. Thus, in modeling the diffusion process, a discrete method has been employed for the generation of fractional Brownian motion (fBm) to illustrate superdiffusive transport. The algorithm is implemented to predict oil slick trajectories following the “Arteaga” oil spill accident that occurred near the Dalian coastal region in 2005. When compared with the observed data and the results of traditional diffusion modeling, the numerical results based on the fBm model are encouraging.</description><identifier>ISSN: 0025-326X</identifier><identifier>EISSN: 1879-3363</identifier><identifier>DOI: 10.1016/j.marpolbul.2009.04.026</identifier><identifier>PMID: 19477466</identifier><identifier>CODEN: MPNBAZ</identifier><language>eng</language><publisher>Kidlington: Elsevier Ltd</publisher><subject>Applied sciences ; Earth sciences ; Earth, ocean, space ; Engineering and environment geology. Geothermics ; Exact sciences and technology ; Fractional Brownian motion ; Kinetics ; Marine ; Models, Chemical ; Natural water pollution ; Non-Fickian diffusion ; Oil spill ; Particle tracking ; Petroleum - analysis ; Pollution ; Pollution, environment geology ; Seawater - chemistry ; Seawaters, estuaries ; Spill trajectory ; Water Movements ; Water treatment and pollution ; Wind</subject><ispartof>Marine pollution bulletin, 2009-09, Vol.58 (9), p.1339-1346</ispartof><rights>2009 Elsevier Ltd</rights><rights>2015 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c492t-ba55c9a161312b73d0fb68a95e3b6c3b5ee8c1b37616244ad46ae6824310986f3</citedby><cites>FETCH-LOGICAL-c492t-ba55c9a161312b73d0fb68a95e3b6c3b5ee8c1b37616244ad46ae6824310986f3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=22010015$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/19477466$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Guo, W.J.</creatorcontrib><creatorcontrib>Wang, Y.X.</creatorcontrib><creatorcontrib>Xie, M.X.</creatorcontrib><creatorcontrib>Cui, Y.J.</creatorcontrib><title>Modeling oil spill trajectory in coastal waters based on fractional Brownian motion</title><title>Marine pollution bulletin</title><addtitle>Mar Pollut Bull</addtitle><description>This paper proposes a numerical method to simulate oil spill trajectories, which are affected by the combination of advection, turbulent diffusion and mechanical spreading process, based on a particle tracking algorithm. Recent studies have shown that the trajectories of drifters on the ocean surface have a fractal structure that is far from being described using ordinary Brownian motion. Thus, in modeling the diffusion process, a discrete method has been employed for the generation of fractional Brownian motion (fBm) to illustrate superdiffusive transport. The algorithm is implemented to predict oil slick trajectories following the “Arteaga” oil spill accident that occurred near the Dalian coastal region in 2005. When compared with the observed data and the results of traditional diffusion modeling, the numerical results based on the fBm model are encouraging.</description><subject>Applied sciences</subject><subject>Earth sciences</subject><subject>Earth, ocean, space</subject><subject>Engineering and environment geology. Geothermics</subject><subject>Exact sciences and technology</subject><subject>Fractional Brownian motion</subject><subject>Kinetics</subject><subject>Marine</subject><subject>Models, Chemical</subject><subject>Natural water pollution</subject><subject>Non-Fickian diffusion</subject><subject>Oil spill</subject><subject>Particle tracking</subject><subject>Petroleum - analysis</subject><subject>Pollution</subject><subject>Pollution, environment geology</subject><subject>Seawater - chemistry</subject><subject>Seawaters, estuaries</subject><subject>Spill trajectory</subject><subject>Water Movements</subject><subject>Water treatment and pollution</subject><subject>Wind</subject><issn>0025-326X</issn><issn>1879-3363</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2009</creationdate><recordtype>article</recordtype><recordid>eNqN0U1vFCEYwHFiNHatfgXlYm8zPrwMDMfaWGtS00M18UaAYQwbFlaYtem3l81u2uN6IoHfAyR_hD4Q6AkQ8Wndb0zZ5mh3sacAqgfeAxUv0IqMUnWMCfYSrQDo0DEqfp2hN7WuAUBSSV6jM6K4lFyIFbr_nicfQ_qNc4i4bkOMeClm7d2SyyMOCbts6mIifjCLLxVbU_2Ec8JzMW4JObWjzyU_pGAS3uT9zlv0ajax-nfH9Rz9vP7y4-qmu737-u3q8rZzXNGls2YYnDJEEEaolWyC2YrRqMEzKxyzg_ejI5ZJQQTl3ExcGC9GyhkBNYqZnaOLw73bkv_sfF30JlTnYzTJ513Vok1SJtlJyHiTCvhJSEE2Run_wFGB2kN5gK7kWouf9baE1u5RE9D7lHqtn1LqfUoNXLeUbfL98Ymd3fjpee7YroGPR2CqM7H1SC7UJ0cpEAAyNHd5cL61-Bt80dUFn5yfQmmZ9ZTDyc_8A6A1wJw</recordid><startdate>20090901</startdate><enddate>20090901</enddate><creator>Guo, W.J.</creator><creator>Wang, Y.X.</creator><creator>Xie, M.X.</creator><creator>Cui, Y.J.</creator><general>Elsevier Ltd</general><general>Elsevier</general><scope>IQODW</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QH</scope><scope>7ST</scope><scope>7TG</scope><scope>7TN</scope><scope>7U6</scope><scope>7UA</scope><scope>C1K</scope><scope>F1W</scope><scope>H97</scope><scope>KL.</scope><scope>L.G</scope><scope>SOI</scope><scope>7TV</scope><scope>8FD</scope><scope>FR3</scope><scope>KR7</scope><scope>7X8</scope></search><sort><creationdate>20090901</creationdate><title>Modeling oil spill trajectory in coastal waters based on fractional Brownian motion</title><author>Guo, W.J. ; Wang, Y.X. ; Xie, M.X. ; Cui, Y.J.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c492t-ba55c9a161312b73d0fb68a95e3b6c3b5ee8c1b37616244ad46ae6824310986f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2009</creationdate><topic>Applied sciences</topic><topic>Earth sciences</topic><topic>Earth, ocean, space</topic><topic>Engineering and environment geology. Geothermics</topic><topic>Exact sciences and technology</topic><topic>Fractional Brownian motion</topic><topic>Kinetics</topic><topic>Marine</topic><topic>Models, Chemical</topic><topic>Natural water pollution</topic><topic>Non-Fickian diffusion</topic><topic>Oil spill</topic><topic>Particle tracking</topic><topic>Petroleum - analysis</topic><topic>Pollution</topic><topic>Pollution, environment geology</topic><topic>Seawater - chemistry</topic><topic>Seawaters, estuaries</topic><topic>Spill trajectory</topic><topic>Water Movements</topic><topic>Water treatment and pollution</topic><topic>Wind</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Guo, W.J.</creatorcontrib><creatorcontrib>Wang, Y.X.</creatorcontrib><creatorcontrib>Xie, M.X.</creatorcontrib><creatorcontrib>Cui, Y.J.</creatorcontrib><collection>Pascal-Francis</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Aqualine</collection><collection>Environment Abstracts</collection><collection>Meteorological &amp; Geoastrophysical Abstracts</collection><collection>Oceanic Abstracts</collection><collection>Sustainability Science Abstracts</collection><collection>Water Resources Abstracts</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) 3: Aquatic Pollution &amp; Environmental Quality</collection><collection>Meteorological &amp; Geoastrophysical Abstracts - Academic</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) Professional</collection><collection>Environment Abstracts</collection><collection>Pollution Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Civil Engineering Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>Marine pollution bulletin</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Guo, W.J.</au><au>Wang, Y.X.</au><au>Xie, M.X.</au><au>Cui, Y.J.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Modeling oil spill trajectory in coastal waters based on fractional Brownian motion</atitle><jtitle>Marine pollution bulletin</jtitle><addtitle>Mar Pollut Bull</addtitle><date>2009-09-01</date><risdate>2009</risdate><volume>58</volume><issue>9</issue><spage>1339</spage><epage>1346</epage><pages>1339-1346</pages><issn>0025-326X</issn><eissn>1879-3363</eissn><coden>MPNBAZ</coden><abstract>This paper proposes a numerical method to simulate oil spill trajectories, which are affected by the combination of advection, turbulent diffusion and mechanical spreading process, based on a particle tracking algorithm. Recent studies have shown that the trajectories of drifters on the ocean surface have a fractal structure that is far from being described using ordinary Brownian motion. Thus, in modeling the diffusion process, a discrete method has been employed for the generation of fractional Brownian motion (fBm) to illustrate superdiffusive transport. The algorithm is implemented to predict oil slick trajectories following the “Arteaga” oil spill accident that occurred near the Dalian coastal region in 2005. When compared with the observed data and the results of traditional diffusion modeling, the numerical results based on the fBm model are encouraging.</abstract><cop>Kidlington</cop><pub>Elsevier Ltd</pub><pmid>19477466</pmid><doi>10.1016/j.marpolbul.2009.04.026</doi><tpages>8</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0025-326X
ispartof Marine pollution bulletin, 2009-09, Vol.58 (9), p.1339-1346
issn 0025-326X
1879-3363
language eng
recordid cdi_proquest_miscellaneous_67612373
source ScienceDirect Freedom Collection 2022-2024
subjects Applied sciences
Earth sciences
Earth, ocean, space
Engineering and environment geology. Geothermics
Exact sciences and technology
Fractional Brownian motion
Kinetics
Marine
Models, Chemical
Natural water pollution
Non-Fickian diffusion
Oil spill
Particle tracking
Petroleum - analysis
Pollution
Pollution, environment geology
Seawater - chemistry
Seawaters, estuaries
Spill trajectory
Water Movements
Water treatment and pollution
Wind
title Modeling oil spill trajectory in coastal waters based on fractional Brownian motion
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-04T17%3A35%3A09IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Modeling%20oil%20spill%20trajectory%20in%20coastal%20waters%20based%20on%20fractional%20Brownian%20motion&rft.jtitle=Marine%20pollution%20bulletin&rft.au=Guo,%20W.J.&rft.date=2009-09-01&rft.volume=58&rft.issue=9&rft.spage=1339&rft.epage=1346&rft.pages=1339-1346&rft.issn=0025-326X&rft.eissn=1879-3363&rft.coden=MPNBAZ&rft_id=info:doi/10.1016/j.marpolbul.2009.04.026&rft_dat=%3Cproquest_cross%3E20789092%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c492t-ba55c9a161312b73d0fb68a95e3b6c3b5ee8c1b37616244ad46ae6824310986f3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=20789092&rft_id=info:pmid/19477466&rfr_iscdi=true