Loading…

Regulation of phospholipase C isozymes by ras superfamily GTPases

The physiological effects of many extracellular stimuli are mediated by receptor-promoted activation of phospholipase C (PLC) and consequential activation of inositol lipid-signaling pathways. These signaling responses include the classically described conversion of PtdIns(4,5)P(2) to the Ca(2+)-mob...

Full description

Saved in:
Bibliographic Details
Published in:Annual review of pharmacology and toxicology 2006-01, Vol.46 (1), p.355-379
Main Authors: HARDEN, T. Kendall, SONDEK, John
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:The physiological effects of many extracellular stimuli are mediated by receptor-promoted activation of phospholipase C (PLC) and consequential activation of inositol lipid-signaling pathways. These signaling responses include the classically described conversion of PtdIns(4,5)P(2) to the Ca(2+)-mobilizing second messenger Ins(1,4,5)P(3) and the protein kinase C-activating second messenger diacylglycerol as well as alterations in membrane association or activity of many proteins that harbor phosphoinositide binding domains. Here we discuss how the family of PLCs elaborates a minimal catalytic core typified by PLC-delta to confer multiple modes of regulation on their phospholipase activities. Although PLC-dependent signaling is prominently regulated by direct interactions with heterotrimeric G proteins or tyrosine kinases, the existence of at least 13 divergent PLC isozymes promises a diverse repertoire of regulatory mechanisms for this class of important signaling proteins. We focus here on the recently realized and extensive regulation of inositol lipid signaling by Ras superfamily GTPases directly acting on PLC isozymes and conclude by considering the biological and pharmacological ramifications of this regulation.
ISSN:0362-1642
1545-4304
DOI:10.1146/annurev.pharmtox.46.120604.141223