Loading…
Activation of Toll-like Receptor 2 on Microglia Promotes Cell Uptake of Alzheimer Disease-associated Amyloid β Peptide
The human G-protein-coupled formyl peptide receptor-like 1 (FPRL1) and its mouse homologue mFPR2 mediate the chemotactic activity of a variety of polypeptides associated with inflammation and bacterial infection, including the 42-amino acid form of amyloid β peptide (Aβ42), a pathogenic factor in Al...
Saved in:
Published in: | The Journal of biological chemistry 2006-02, Vol.281 (6), p.3651-3659 |
---|---|
Main Authors: | , , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | The human G-protein-coupled formyl peptide receptor-like 1 (FPRL1) and its mouse homologue mFPR2 mediate the chemotactic activity of a variety of polypeptides associated with inflammation and bacterial infection, including the 42-amino acid form of amyloid β peptide (Aβ42), a pathogenic factor in Alzheimer disease. Because mFPR2 was inducible in mouse microglial cells by proinflammatory stimulants, such as bacterial lipopolysaccharide, a ligand for the Toll-like receptor 4 (TLR4), we investigated the role of TLR2 in the regulation of mFPR2. We found that a TLR2 agonist, peptidoglycan (PGN) derived from Gram-positive bacterium Staphylococcus aureus, induced considerable mFpr2 mRNA expression in a mouse microglial cell line and primary microglial cells. This was associated with a markedly increased chemotaxis of the cells in response to mFPR2 agonist peptides. In addition, activation of TLR2 markedly enhanced mFPR2-mediated uptake of Aβ42 by microglia. Studies of the mechanistic basis showed that PGN activates MAPK and IκBα, and the effect of PGN on induction of mFPR2 was dependent on signaling pathways via ERK1/2 and p38 MAPKs. The use of TLR2 on microglial cells by PGN was supported by the fact that N9 cells transfected with short interfering RNA targeting mouse TLR2 failed to show increased expression of functional mFPR2 after stimulation with PGN. Our results demonstrated a potentially important role for TLR2 in microglial cells of promoting cell responses to chemoattractants produced in lesions of inflammatory and neurodegenerative diseases in the brain. |
---|---|
ISSN: | 0021-9258 1083-351X |
DOI: | 10.1074/jbc.M508125200 |