Loading…

Antiplasmin-cleaving enzyme is a soluble form of fibroblast activation protein

Circulating antiplasmin-cleaving enzyme (APCE) has a role in fibrinolysis and appears structurally similar to fibroblast activation protein (FAP), a cell-surface proteinase that promotes invasiveness of certain epithelial cancers. To explore this potential relationship, we performed comparative stru...

Full description

Saved in:
Bibliographic Details
Published in:Blood 2006-02, Vol.107 (4), p.1397-1404
Main Authors: Lee, Kyung N., Jackson, Kenneth W., Christiansen, Victoria J., Lee, Chung S., Chun, Jin-Geun, McKee, Patrick A.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Circulating antiplasmin-cleaving enzyme (APCE) has a role in fibrinolysis and appears structurally similar to fibroblast activation protein (FAP), a cell-surface proteinase that promotes invasiveness of certain epithelial cancers. To explore this potential relationship, we performed comparative structure/function analyses of the 2 enzymes. APCE from human plasma and recombinant FAP (rFAP) exhibited identical pH optima of 7.5, extinction coefficients (∈280nm1%) of 20.2 and 20.5, common sequences of tryptic peptides, and cross-reactivity with FAP antibody. APCE and rFAP are homodimers with monomeric subunits of 97 and 93 kDa. Only homodimers appear to have enzymatic activity, with essentially identical kinetics toward Met-α2-antiplasmin (Met-α2AP) and peptide substrates. APCE and rFAP cleave both Pro3-Leu4 and Pro12-Asn13 bonds of Met-α2AP, but relative kcat/Km values for Pro12-Asn13 are about 16-fold higher than for Pro3-Leu4. APCE and rFAP demonstrate higher kcat/Km values toward a peptide modeled on P4-P4′ sequence surrounding the Pro12-Asn13 primary cleavage site than for Z-Gly-Pro-AMC and Ala-Pro-AFC substrates. These data support APCE as a soluble derivative of FAP and Met-α2AP as its physiologic substrate. Conversion of Met-α2AP by membrane or soluble FAP to the more easily fibrin-incorporable form, Asn-α2AP, may increase plasmin inhibition within fibrin surrounding certain neoplasms and have an impact on growth and therapeutic susceptibility.
ISSN:0006-4971
1528-0020
DOI:10.1182/blood-2005-08-3452