Loading…

Single-cell ecophysiology of microbes as revealed by Raman microspectroscopy or secondary ion mass spectrometry imaging

An astonishing diversity of microorganisms thrives on our planet and their activities are fundamental for the functioning of all ecosystems including the human body. Consequently, detailed insights into the functions performed by microorganisms in their natural environment are required to understand...

Full description

Saved in:
Bibliographic Details
Published in:Annual review of microbiology 2009-01, Vol.63 (1), p.411-429
Main Author: Wagner, Michael
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:An astonishing diversity of microorganisms thrives on our planet and their activities are fundamental for the functioning of all ecosystems including the human body. Consequently, detailed insights into the functions performed by microorganisms in their natural environment are required to understand human biology and the biology of the world around us and to lay the foundations for targeted manipulation of microbial communities. Isotope-labeling techniques combined with molecular detection tools are frequently used by microbial ecologists to directly link structure and function of microbial communities and to monitor metabolic properties of uncultured microbes at the single-cell level. However, only the recent combination of such techniques with Raman microspectroscopy or secondary ion mass spectrometry enables functional studies of microbes on a single-cell level by using stable isotopes as labels. This review provides an overview of these new techniques and their applications in microbial ecology, which allow us to investigate the ecophysiology of uncultured microbes to an extent that was unimaginable just a few years ago.
ISSN:0066-4227
1545-3251
DOI:10.1146/annurev.micro.091208.073233