Loading…

New polyurethane-based material for vascular corrosion casting with improved physical and imaging characteristics

Vascular corrosion casting has been established as a method to reconstruct the three‐dimensional (3D) structure of blood vessels of organs and tissues. After replacing the blood volume with a low viscosity resin, the surrounding tissue is removed to replicate the vascular architecture, typically usi...

Full description

Saved in:
Bibliographic Details
Published in:Microscopy research and technique 2006-02, Vol.69 (2), p.138-147
Main Authors: Krucker, Thomas, Lang, Axel, Meyer, Eric P.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Vascular corrosion casting has been established as a method to reconstruct the three‐dimensional (3D) structure of blood vessels of organs and tissues. After replacing the blood volume with a low viscosity resin, the surrounding tissue is removed to replicate the vascular architecture, typically using scanning electron microscopy (SEM). To date available casting resins have had significant limitations such as lack of viscosity, leading to insufficient perfusion of smallest capillaries in organs and tissues of smaller species, interaction with surrounding tissue or fragility of resulting casts. We have reported here about a new polyurethane‐based casting resin (PU4ii†) with superior physical and imaging characteristics. Low viscosity, timely polymerization, and minimal shrinking of PU4ii produces high quality casts, including the finest capillaries. These casts are highly elastic while retaining their original structure to facilitate postcasting tissue dissection and pruning of casts. SEM images illustrate the high reproduction quality, including endothelial cell imprints, features that allow one to discern arterial and veinal vessels. For quantitative analysis, casts from PU4ii can be imaged using micro‐computed tomography to produce digital 3D reconstructions. The inherent fluorescence of PU4ii is sufficient to reproduce casts with or without tissue using confocal microscopy (CM). Because of the simplified casting procedure, the high reproducibility and the superior reproduction quality, a combination of vascular corrosion casting using PU4ii with advanced imaging technologies has great potential to support the description of vascular defects and drug effects in disease models using mutant mice. Microsc. Res. Tech. 69:138–147, 2006. © 2006 Wiley‐Liss, Inc.
ISSN:1059-910X
1097-0029
DOI:10.1002/jemt.20263