Loading…

Integrated microfluidic systems for high-performance genetic analysis

Driven by the ambitious goals of genome-related research, fully integrated microfluidic systems have developed rapidly to advance biomolecular and, in particular, genetic analysis. To produce a microsystem with high performance, several key elements must be strategically chosen, including device mat...

Full description

Saved in:
Bibliographic Details
Published in:Trends in biotechnology (Regular ed.) 2009-10, Vol.27 (10), p.572-581
Main Authors: Liu, Peng, Mathies, Richard A
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Driven by the ambitious goals of genome-related research, fully integrated microfluidic systems have developed rapidly to advance biomolecular and, in particular, genetic analysis. To produce a microsystem with high performance, several key elements must be strategically chosen, including device materials, temperature control, microfluidic control, and sample/product transport integration. We review several significant examples of microfluidic integration in DNA sequencing, gene expression analysis, pathogen detection, and forensic short tandem repeat typing. The advantages of high speed, increased sensitivity, and enhanced reliability enable these integrated microsystems to address bioanalytical challenges such as single-copy DNA sequencing, single-cell gene expression analysis, pathogen detection, and forensic identification of humans in formats that enable large-scale and point-of-analysis applications.
ISSN:0167-7799
1879-3096
DOI:10.1016/j.tibtech.2009.07.002