Loading…
Modulation of paracetamol antinociception by caffeine and by selective adenosine A2 receptor antagonists in mice
This study investigated the involvement of adenosine receptors in the interaction between paracetamol and caffeine in mice, using the adenosine A2A receptor antagonist 5-amino-7-(2-phenylethyl)-2-(2-furyl)pyrazolo[4,3-e]-1,2,4-triazolo[1,5-c]pyrimidine (SCH58261) and the adenosine A2B receptor antag...
Saved in:
Published in: | European journal of pharmacology 2006-02, Vol.531 (1-3), p.80-86 |
---|---|
Main Authors: | , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | This study investigated the involvement of adenosine receptors in the interaction between paracetamol and caffeine in mice, using the adenosine A2A receptor antagonist 5-amino-7-(2-phenylethyl)-2-(2-furyl)pyrazolo[4,3-e]-1,2,4-triazolo[1,5-c]pyrimidine (SCH58261) and the adenosine A2B receptor antagonist 1-propyl-8-p-sulfophenylxanthine (PSB1115), in the tail immersion and hot-plate tests. Paracetamol (10-200 mg/kg) was antinociceptive in both tests, but, in contrast to previous studies, caffeine (10 mg/kg) was pronociceptive in the tail immersion test, and reduced the effects of paracetamol in both tests. SCH58261 (3 mg/kg) was antinociceptive in both tests and in its presence paracetamol (50 mg/kg) had no further effect. PSB1115 (10 mg/kg) had little effect alone but potentiated the effect of paracetamol (50 mg/kg) in the hot-plate test and abolished it in the tail immersion test. These results suggest that adenosine A2B receptors may be involved in the action of paracetamol in a pathway-dependent manner, and also support the existence of pronociceptive adenosine A2A receptors. |
---|---|
ISSN: | 0014-2999 1879-0712 |
DOI: | 10.1016/j.ejphar.2005.12.004 |