Loading…

Population approach to a neural discrimination task

This article gives insights into the possible neuronal processes involved in visual discrimination. We study the performance of a spiking network of Integrate-and-Fire (IF) neurons when performing a benchmark discrimination task. The task we adopted consists of determining the direction of moving do...

Full description

Saved in:
Bibliographic Details
Published in:Biological cybernetics 2006-03, Vol.94 (3), p.180-191
Main Authors: Gaillard, Benoit, Buxton, Hilary, Feng, Jianfeng
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:This article gives insights into the possible neuronal processes involved in visual discrimination. We study the performance of a spiking network of Integrate-and-Fire (IF) neurons when performing a benchmark discrimination task. The task we adopted consists of determining the direction of moving dots in a noisy context using similar stimuli to those in the experiments of Newsome and colleagues. We present a neural model that performs the discrimination involved in this task. By varying the synaptic parameters of the IF neurons, we illustrate the counter-intuitive importance of the second-order statistics (input noise) in improving the discrimination accuracy of the model. We show that measuring the Firing Rate (FR) over a population enables the model to discriminate in realistic times, and even surprisingly significantly increases its discrimination accuracy over the single neuron case, despite the faster processing. We also show that increasing the input noise increases the discrimination accuracy but only at the expense of the speed at which we can read out the FR.
ISSN:0340-1200
1432-0770
DOI:10.1007/s00422-005-0039-3