Loading…
High resolution photofragment translational spectroscopy studies of the near ultraviolet photolysis of 2,5-dimethylpyrrole
The photodissociation dynamics of 2,5-dimethylpyrrole (2,5-DMP) has been investigated following excitation at 193.3 nm and at many near ultraviolet (UV) wavelengths in the range 244 < lambda(phot) < 282 nm using H Rydberg atom photofragment translational spectroscopy (PTS). Complementary UV ab...
Saved in:
Published in: | Physical chemistry chemical physics : PCCP 2006-02, Vol.8 (5), p.599-612 |
---|---|
Main Authors: | , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | The photodissociation dynamics of 2,5-dimethylpyrrole (2,5-DMP) has been investigated following excitation at 193.3 nm and at many near ultraviolet (UV) wavelengths in the range 244 < lambda(phot) < 282 nm using H Rydberg atom photofragment translational spectroscopy (PTS). Complementary UV absorption and, at the longest excitation wavelengths, one photon resonant multiphoton ionisation spectra of 2,5-DMP are reported also; analysis of the latter highlights the role of methyl torsional motions in promoting the parent absorption. The deduced fragmentation dynamics show parallels with that reported recently (B. Cronin, M. G. D. Nix, R. H. Qadiri and M. N. R. Ashfold, Phys. Chem. Chem. Phys., 2004, 6, 5031) for the bare pyrrole molecule. Excitation at the longer wavelengths leads to (vibronically induced) population of the 1(1)A(2)(pisigma*) excited state of 2,5-DMP, but once lambda(phot) decreases to approximately 250 nm stronger, dipole allowed transitions start to become apparent in the parent absorption. All total kinetic energy release (TKER) spectra of the H + 2,5-dimethylpyrrolyl (2,5-DMPyl) fragments measured at lambda(phot)> or=244 nm show a structured fast component, many of which are dominated by a peak with TKER approximately 5100 cm(-1); analysis of this structure reveals lambda(phot) dependent population of selected vibrational levels of 2,5-DMPyl, and enables determination of the N-H bond strength in 2,5-DMP: D(0) = 30 530 +/- 100 cm(-1). Two classes of behaviour are proposed to account for details of the observed energy partitioning. Both assume that N-H bond fission involves passage over (or tunnelling through) a small exit channel barrier on the 1(1)A(2) potential energy surface, but differ according to the vibrational energy content of the photo-prepared molecules. Specific parent out-of-plane skeletal modes that promote the 1(1)A(2)-X(1)A(1) absorption appear to evolve adiabatically into the corresponding vibrations of the 2,5-DMPyl products. Methyl torsions can also promote the 1(1)A(2) |
---|---|
ISSN: | 1463-9076 1463-9084 |
DOI: | 10.1039/b513949j |