Loading…
Intermolecular interaction and a concentration-quenching mechanism of phosphorescent Ir(III) complexes in a solid film
Solid-state self-quenching processes of highly efficient Ir(III) phosphorescent emitters are investigated by the measurement of thin film photoluminescence quantum efficiency and transient lifetime as a function of doping concentration in a host matrix. The radiative decay rate constant is found to...
Saved in:
Published in: | Physical review letters 2006-01, Vol.96 (1), p.017404-017404, Article 017404 |
---|---|
Main Authors: | , , , , |
Format: | Article |
Language: | English |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Solid-state self-quenching processes of highly efficient Ir(III) phosphorescent emitters are investigated by the measurement of thin film photoluminescence quantum efficiency and transient lifetime as a function of doping concentration in a host matrix. The radiative decay rate constant is found to be independent from the average distance between dopant molecules (R), and the concentration-quenching rate constant is shown to be dependent on R(-6). The quenching dependence on R strongly suggests that luminescent concentration quenching in a phosphorescent Ir(III) complex:host film is controlled by dipole-dipole deactivating interactions as described by the Förster energy transfer model. |
---|---|
ISSN: | 0031-9007 1079-7114 |
DOI: | 10.1103/physrevlett.96.017404 |