Loading…
Homoclinic snaking in bounded domains
Homoclinic snaking is a term used to describe the back and forth oscillation of a branch of time-independent spatially localized states in a bistable spatially reversible system as the localized structure grows in length by repeatedly adding rolls on either side. On the real line this process contin...
Saved in:
Published in: | Physical review. E, Statistical, nonlinear, and soft matter physics Statistical, nonlinear, and soft matter physics, 2009-08, Vol.80 (2 Pt 2), p.026210-026210, Article 026210 |
---|---|
Main Authors: | , |
Format: | Article |
Language: | English |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c345t-3f1beb96bf1f3c3b69ed36e5de6d3d1ded85226a3ee31e6a5f85e891ab22be7c3 |
---|---|
cites | cdi_FETCH-LOGICAL-c345t-3f1beb96bf1f3c3b69ed36e5de6d3d1ded85226a3ee31e6a5f85e891ab22be7c3 |
container_end_page | 026210 |
container_issue | 2 Pt 2 |
container_start_page | 026210 |
container_title | Physical review. E, Statistical, nonlinear, and soft matter physics |
container_volume | 80 |
creator | Houghton, S M Knobloch, E |
description | Homoclinic snaking is a term used to describe the back and forth oscillation of a branch of time-independent spatially localized states in a bistable spatially reversible system as the localized structure grows in length by repeatedly adding rolls on either side. On the real line this process continues forever. In finite domains snaking terminates once the domain is filled but the details of how this occurs depend critically on the choice of boundary conditions. With periodic boundary conditions the snaking branches terminate on a branch of spatially periodic states. However, with non-Neumann boundary conditions they turn continuously into a large amplitude filling state that replaces the periodic state. This behavior, shown here in detail for the Swift-Hohenberg equation, explains the phenomenon of "snaking without bistability," recently observed in simulations of binary fluid convection by Mercader et al. Phys. Rev. E 80, 025201 (2009). |
doi_str_mv | 10.1103/PhysRevE.80.026210 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_67675692</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>67675692</sourcerecordid><originalsourceid>FETCH-LOGICAL-c345t-3f1beb96bf1f3c3b69ed36e5de6d3d1ded85226a3ee31e6a5f85e891ab22be7c3</originalsourceid><addsrcrecordid>eNpFkD1PwzAURS0EoqXwBxhQFtgSbL_aiUdUFYpUCYRgtvzxAobEKXGD1H9PqxYx3Tvce4ZDyCWjBWMUbp8_NukFf-ZFRQvKJWf0iIyZEDTnUMrjXQeVQynEiJyl9EkpcKimp2TEVKk4h-mYXC-6tnNNiMFlKZqvEN-zEDPbDdGjz3zXmhDTOTmpTZPw4pAT8nY_f50t8uXTw-Psbpk7mIp1DjWzaJW0NavBgZUKPUgUHqUHz7bASnAuDSACQ2lEXQmsFDOWc4ulgwm52XNXffc9YFrrNiSHTWMidkPSspSlkIpvh3w_dH2XUo-1XvWhNf1GM6p3cvSfHF1RvZezPV0d6INt0f9fDjbgF0TaYcs</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>67675692</pqid></control><display><type>article</type><title>Homoclinic snaking in bounded domains</title><source>American Physical Society:Jisc Collections:APS Read and Publish 2023-2025 (reading list)</source><creator>Houghton, S M ; Knobloch, E</creator><creatorcontrib>Houghton, S M ; Knobloch, E</creatorcontrib><description>Homoclinic snaking is a term used to describe the back and forth oscillation of a branch of time-independent spatially localized states in a bistable spatially reversible system as the localized structure grows in length by repeatedly adding rolls on either side. On the real line this process continues forever. In finite domains snaking terminates once the domain is filled but the details of how this occurs depend critically on the choice of boundary conditions. With periodic boundary conditions the snaking branches terminate on a branch of spatially periodic states. However, with non-Neumann boundary conditions they turn continuously into a large amplitude filling state that replaces the periodic state. This behavior, shown here in detail for the Swift-Hohenberg equation, explains the phenomenon of "snaking without bistability," recently observed in simulations of binary fluid convection by Mercader et al. Phys. Rev. E 80, 025201 (2009).</description><identifier>ISSN: 1539-3755</identifier><identifier>EISSN: 1550-2376</identifier><identifier>DOI: 10.1103/PhysRevE.80.026210</identifier><identifier>PMID: 19792234</identifier><language>eng</language><publisher>United States</publisher><ispartof>Physical review. E, Statistical, nonlinear, and soft matter physics, 2009-08, Vol.80 (2 Pt 2), p.026210-026210, Article 026210</ispartof><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c345t-3f1beb96bf1f3c3b69ed36e5de6d3d1ded85226a3ee31e6a5f85e891ab22be7c3</citedby><cites>FETCH-LOGICAL-c345t-3f1beb96bf1f3c3b69ed36e5de6d3d1ded85226a3ee31e6a5f85e891ab22be7c3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27903,27904</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/19792234$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Houghton, S M</creatorcontrib><creatorcontrib>Knobloch, E</creatorcontrib><title>Homoclinic snaking in bounded domains</title><title>Physical review. E, Statistical, nonlinear, and soft matter physics</title><addtitle>Phys Rev E Stat Nonlin Soft Matter Phys</addtitle><description>Homoclinic snaking is a term used to describe the back and forth oscillation of a branch of time-independent spatially localized states in a bistable spatially reversible system as the localized structure grows in length by repeatedly adding rolls on either side. On the real line this process continues forever. In finite domains snaking terminates once the domain is filled but the details of how this occurs depend critically on the choice of boundary conditions. With periodic boundary conditions the snaking branches terminate on a branch of spatially periodic states. However, with non-Neumann boundary conditions they turn continuously into a large amplitude filling state that replaces the periodic state. This behavior, shown here in detail for the Swift-Hohenberg equation, explains the phenomenon of "snaking without bistability," recently observed in simulations of binary fluid convection by Mercader et al. Phys. Rev. E 80, 025201 (2009).</description><issn>1539-3755</issn><issn>1550-2376</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2009</creationdate><recordtype>article</recordtype><recordid>eNpFkD1PwzAURS0EoqXwBxhQFtgSbL_aiUdUFYpUCYRgtvzxAobEKXGD1H9PqxYx3Tvce4ZDyCWjBWMUbp8_NukFf-ZFRQvKJWf0iIyZEDTnUMrjXQeVQynEiJyl9EkpcKimp2TEVKk4h-mYXC-6tnNNiMFlKZqvEN-zEDPbDdGjz3zXmhDTOTmpTZPw4pAT8nY_f50t8uXTw-Psbpk7mIp1DjWzaJW0NavBgZUKPUgUHqUHz7bASnAuDSACQ2lEXQmsFDOWc4ulgwm52XNXffc9YFrrNiSHTWMidkPSspSlkIpvh3w_dH2XUo-1XvWhNf1GM6p3cvSfHF1RvZezPV0d6INt0f9fDjbgF0TaYcs</recordid><startdate>20090801</startdate><enddate>20090801</enddate><creator>Houghton, S M</creator><creator>Knobloch, E</creator><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope></search><sort><creationdate>20090801</creationdate><title>Homoclinic snaking in bounded domains</title><author>Houghton, S M ; Knobloch, E</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c345t-3f1beb96bf1f3c3b69ed36e5de6d3d1ded85226a3ee31e6a5f85e891ab22be7c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2009</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Houghton, S M</creatorcontrib><creatorcontrib>Knobloch, E</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Physical review. E, Statistical, nonlinear, and soft matter physics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Houghton, S M</au><au>Knobloch, E</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Homoclinic snaking in bounded domains</atitle><jtitle>Physical review. E, Statistical, nonlinear, and soft matter physics</jtitle><addtitle>Phys Rev E Stat Nonlin Soft Matter Phys</addtitle><date>2009-08-01</date><risdate>2009</risdate><volume>80</volume><issue>2 Pt 2</issue><spage>026210</spage><epage>026210</epage><pages>026210-026210</pages><artnum>026210</artnum><issn>1539-3755</issn><eissn>1550-2376</eissn><abstract>Homoclinic snaking is a term used to describe the back and forth oscillation of a branch of time-independent spatially localized states in a bistable spatially reversible system as the localized structure grows in length by repeatedly adding rolls on either side. On the real line this process continues forever. In finite domains snaking terminates once the domain is filled but the details of how this occurs depend critically on the choice of boundary conditions. With periodic boundary conditions the snaking branches terminate on a branch of spatially periodic states. However, with non-Neumann boundary conditions they turn continuously into a large amplitude filling state that replaces the periodic state. This behavior, shown here in detail for the Swift-Hohenberg equation, explains the phenomenon of "snaking without bistability," recently observed in simulations of binary fluid convection by Mercader et al. Phys. Rev. E 80, 025201 (2009).</abstract><cop>United States</cop><pmid>19792234</pmid><doi>10.1103/PhysRevE.80.026210</doi><tpages>1</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1539-3755 |
ispartof | Physical review. E, Statistical, nonlinear, and soft matter physics, 2009-08, Vol.80 (2 Pt 2), p.026210-026210, Article 026210 |
issn | 1539-3755 1550-2376 |
language | eng |
recordid | cdi_proquest_miscellaneous_67675692 |
source | American Physical Society:Jisc Collections:APS Read and Publish 2023-2025 (reading list) |
title | Homoclinic snaking in bounded domains |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-22T21%3A12%3A45IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Homoclinic%20snaking%20in%20bounded%20domains&rft.jtitle=Physical%20review.%20E,%20Statistical,%20nonlinear,%20and%20soft%20matter%20physics&rft.au=Houghton,%20S%20M&rft.date=2009-08-01&rft.volume=80&rft.issue=2%20Pt%202&rft.spage=026210&rft.epage=026210&rft.pages=026210-026210&rft.artnum=026210&rft.issn=1539-3755&rft.eissn=1550-2376&rft_id=info:doi/10.1103/PhysRevE.80.026210&rft_dat=%3Cproquest_cross%3E67675692%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c345t-3f1beb96bf1f3c3b69ed36e5de6d3d1ded85226a3ee31e6a5f85e891ab22be7c3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=67675692&rft_id=info:pmid/19792234&rfr_iscdi=true |