Loading…

Homoclinic snaking in bounded domains

Homoclinic snaking is a term used to describe the back and forth oscillation of a branch of time-independent spatially localized states in a bistable spatially reversible system as the localized structure grows in length by repeatedly adding rolls on either side. On the real line this process contin...

Full description

Saved in:
Bibliographic Details
Published in:Physical review. E, Statistical, nonlinear, and soft matter physics Statistical, nonlinear, and soft matter physics, 2009-08, Vol.80 (2 Pt 2), p.026210-026210, Article 026210
Main Authors: Houghton, S M, Knobloch, E
Format: Article
Language:English
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c345t-3f1beb96bf1f3c3b69ed36e5de6d3d1ded85226a3ee31e6a5f85e891ab22be7c3
cites cdi_FETCH-LOGICAL-c345t-3f1beb96bf1f3c3b69ed36e5de6d3d1ded85226a3ee31e6a5f85e891ab22be7c3
container_end_page 026210
container_issue 2 Pt 2
container_start_page 026210
container_title Physical review. E, Statistical, nonlinear, and soft matter physics
container_volume 80
creator Houghton, S M
Knobloch, E
description Homoclinic snaking is a term used to describe the back and forth oscillation of a branch of time-independent spatially localized states in a bistable spatially reversible system as the localized structure grows in length by repeatedly adding rolls on either side. On the real line this process continues forever. In finite domains snaking terminates once the domain is filled but the details of how this occurs depend critically on the choice of boundary conditions. With periodic boundary conditions the snaking branches terminate on a branch of spatially periodic states. However, with non-Neumann boundary conditions they turn continuously into a large amplitude filling state that replaces the periodic state. This behavior, shown here in detail for the Swift-Hohenberg equation, explains the phenomenon of "snaking without bistability," recently observed in simulations of binary fluid convection by Mercader et al. Phys. Rev. E 80, 025201 (2009).
doi_str_mv 10.1103/PhysRevE.80.026210
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_67675692</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>67675692</sourcerecordid><originalsourceid>FETCH-LOGICAL-c345t-3f1beb96bf1f3c3b69ed36e5de6d3d1ded85226a3ee31e6a5f85e891ab22be7c3</originalsourceid><addsrcrecordid>eNpFkD1PwzAURS0EoqXwBxhQFtgSbL_aiUdUFYpUCYRgtvzxAobEKXGD1H9PqxYx3Tvce4ZDyCWjBWMUbp8_NukFf-ZFRQvKJWf0iIyZEDTnUMrjXQeVQynEiJyl9EkpcKimp2TEVKk4h-mYXC-6tnNNiMFlKZqvEN-zEDPbDdGjz3zXmhDTOTmpTZPw4pAT8nY_f50t8uXTw-Psbpk7mIp1DjWzaJW0NavBgZUKPUgUHqUHz7bASnAuDSACQ2lEXQmsFDOWc4ulgwm52XNXffc9YFrrNiSHTWMidkPSspSlkIpvh3w_dH2XUo-1XvWhNf1GM6p3cvSfHF1RvZezPV0d6INt0f9fDjbgF0TaYcs</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>67675692</pqid></control><display><type>article</type><title>Homoclinic snaking in bounded domains</title><source>American Physical Society:Jisc Collections:APS Read and Publish 2023-2025 (reading list)</source><creator>Houghton, S M ; Knobloch, E</creator><creatorcontrib>Houghton, S M ; Knobloch, E</creatorcontrib><description>Homoclinic snaking is a term used to describe the back and forth oscillation of a branch of time-independent spatially localized states in a bistable spatially reversible system as the localized structure grows in length by repeatedly adding rolls on either side. On the real line this process continues forever. In finite domains snaking terminates once the domain is filled but the details of how this occurs depend critically on the choice of boundary conditions. With periodic boundary conditions the snaking branches terminate on a branch of spatially periodic states. However, with non-Neumann boundary conditions they turn continuously into a large amplitude filling state that replaces the periodic state. This behavior, shown here in detail for the Swift-Hohenberg equation, explains the phenomenon of "snaking without bistability," recently observed in simulations of binary fluid convection by Mercader et al. Phys. Rev. E 80, 025201 (2009).</description><identifier>ISSN: 1539-3755</identifier><identifier>EISSN: 1550-2376</identifier><identifier>DOI: 10.1103/PhysRevE.80.026210</identifier><identifier>PMID: 19792234</identifier><language>eng</language><publisher>United States</publisher><ispartof>Physical review. E, Statistical, nonlinear, and soft matter physics, 2009-08, Vol.80 (2 Pt 2), p.026210-026210, Article 026210</ispartof><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c345t-3f1beb96bf1f3c3b69ed36e5de6d3d1ded85226a3ee31e6a5f85e891ab22be7c3</citedby><cites>FETCH-LOGICAL-c345t-3f1beb96bf1f3c3b69ed36e5de6d3d1ded85226a3ee31e6a5f85e891ab22be7c3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27903,27904</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/19792234$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Houghton, S M</creatorcontrib><creatorcontrib>Knobloch, E</creatorcontrib><title>Homoclinic snaking in bounded domains</title><title>Physical review. E, Statistical, nonlinear, and soft matter physics</title><addtitle>Phys Rev E Stat Nonlin Soft Matter Phys</addtitle><description>Homoclinic snaking is a term used to describe the back and forth oscillation of a branch of time-independent spatially localized states in a bistable spatially reversible system as the localized structure grows in length by repeatedly adding rolls on either side. On the real line this process continues forever. In finite domains snaking terminates once the domain is filled but the details of how this occurs depend critically on the choice of boundary conditions. With periodic boundary conditions the snaking branches terminate on a branch of spatially periodic states. However, with non-Neumann boundary conditions they turn continuously into a large amplitude filling state that replaces the periodic state. This behavior, shown here in detail for the Swift-Hohenberg equation, explains the phenomenon of "snaking without bistability," recently observed in simulations of binary fluid convection by Mercader et al. Phys. Rev. E 80, 025201 (2009).</description><issn>1539-3755</issn><issn>1550-2376</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2009</creationdate><recordtype>article</recordtype><recordid>eNpFkD1PwzAURS0EoqXwBxhQFtgSbL_aiUdUFYpUCYRgtvzxAobEKXGD1H9PqxYx3Tvce4ZDyCWjBWMUbp8_NukFf-ZFRQvKJWf0iIyZEDTnUMrjXQeVQynEiJyl9EkpcKimp2TEVKk4h-mYXC-6tnNNiMFlKZqvEN-zEDPbDdGjz3zXmhDTOTmpTZPw4pAT8nY_f50t8uXTw-Psbpk7mIp1DjWzaJW0NavBgZUKPUgUHqUHz7bASnAuDSACQ2lEXQmsFDOWc4ulgwm52XNXffc9YFrrNiSHTWMidkPSspSlkIpvh3w_dH2XUo-1XvWhNf1GM6p3cvSfHF1RvZezPV0d6INt0f9fDjbgF0TaYcs</recordid><startdate>20090801</startdate><enddate>20090801</enddate><creator>Houghton, S M</creator><creator>Knobloch, E</creator><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope></search><sort><creationdate>20090801</creationdate><title>Homoclinic snaking in bounded domains</title><author>Houghton, S M ; Knobloch, E</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c345t-3f1beb96bf1f3c3b69ed36e5de6d3d1ded85226a3ee31e6a5f85e891ab22be7c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2009</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Houghton, S M</creatorcontrib><creatorcontrib>Knobloch, E</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Physical review. E, Statistical, nonlinear, and soft matter physics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Houghton, S M</au><au>Knobloch, E</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Homoclinic snaking in bounded domains</atitle><jtitle>Physical review. E, Statistical, nonlinear, and soft matter physics</jtitle><addtitle>Phys Rev E Stat Nonlin Soft Matter Phys</addtitle><date>2009-08-01</date><risdate>2009</risdate><volume>80</volume><issue>2 Pt 2</issue><spage>026210</spage><epage>026210</epage><pages>026210-026210</pages><artnum>026210</artnum><issn>1539-3755</issn><eissn>1550-2376</eissn><abstract>Homoclinic snaking is a term used to describe the back and forth oscillation of a branch of time-independent spatially localized states in a bistable spatially reversible system as the localized structure grows in length by repeatedly adding rolls on either side. On the real line this process continues forever. In finite domains snaking terminates once the domain is filled but the details of how this occurs depend critically on the choice of boundary conditions. With periodic boundary conditions the snaking branches terminate on a branch of spatially periodic states. However, with non-Neumann boundary conditions they turn continuously into a large amplitude filling state that replaces the periodic state. This behavior, shown here in detail for the Swift-Hohenberg equation, explains the phenomenon of "snaking without bistability," recently observed in simulations of binary fluid convection by Mercader et al. Phys. Rev. E 80, 025201 (2009).</abstract><cop>United States</cop><pmid>19792234</pmid><doi>10.1103/PhysRevE.80.026210</doi><tpages>1</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1539-3755
ispartof Physical review. E, Statistical, nonlinear, and soft matter physics, 2009-08, Vol.80 (2 Pt 2), p.026210-026210, Article 026210
issn 1539-3755
1550-2376
language eng
recordid cdi_proquest_miscellaneous_67675692
source American Physical Society:Jisc Collections:APS Read and Publish 2023-2025 (reading list)
title Homoclinic snaking in bounded domains
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-22T21%3A12%3A45IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Homoclinic%20snaking%20in%20bounded%20domains&rft.jtitle=Physical%20review.%20E,%20Statistical,%20nonlinear,%20and%20soft%20matter%20physics&rft.au=Houghton,%20S%20M&rft.date=2009-08-01&rft.volume=80&rft.issue=2%20Pt%202&rft.spage=026210&rft.epage=026210&rft.pages=026210-026210&rft.artnum=026210&rft.issn=1539-3755&rft.eissn=1550-2376&rft_id=info:doi/10.1103/PhysRevE.80.026210&rft_dat=%3Cproquest_cross%3E67675692%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c345t-3f1beb96bf1f3c3b69ed36e5de6d3d1ded85226a3ee31e6a5f85e891ab22be7c3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=67675692&rft_id=info:pmid/19792234&rfr_iscdi=true