Loading…

The Genes Induced by Signal Transducer and Activators of Transcription (STAT)3 and STAT5 in Mammary Epithelial Cells Define the Roles of these STATs in Mammary Development

Prolactin and leukemia inhibitory factor (LIF) have different roles in the adult mammary gland, which are mediated in part by the signal transducers and activators of transcription (STAT)5 and STAT3. In vivo studies have shown that STAT5 contributes to prolactin-dependent lobuloalveolar development...

Full description

Saved in:
Bibliographic Details
Published in:Molecular endocrinology (Baltimore, Md.) Md.), 2006-03, Vol.20 (3), p.675-685
Main Authors: Clarkson, Richard W. E, Boland, Marion P, Kritikou, Ekaterini A, Lee, Jennifer M, Freeman, Tom C, Tiffen, Paul G, Watson, Christine J
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Prolactin and leukemia inhibitory factor (LIF) have different roles in the adult mammary gland, which are mediated in part by the signal transducers and activators of transcription (STAT)5 and STAT3. In vivo studies have shown that STAT5 contributes to prolactin-dependent lobuloalveolar development and lactation whereas STAT3 mediates LIF-dependent epithelial apoptosis during postlactational involution. To understand the molecular basis of these STAT-dependent pathways, we demonstrate the ligand-independent effects of STAT5 and STAT3 in mammary epithelial cells in vitro and also identify the genes regulated by these related transcription factors. Thus, using conditionally active STAT3- or STAT5a-GyraseB fusion proteins, we observed that enforced and specific dimerization of STAT3 induced apoptosis whereas STAT5 induced differentiation of mammary epithelial cells. Furthermore, STAT5 attenuated apoptosis mediated by LIF, the physiological inducer of STAT3. Microarray analysis of STAT3- and STAT5-induced genes using this system demonstrated a marked specificity, which reflected their different physiological effects in vitro and in vivo. STAT5-specific gene targets included the milk protein genes α-casein and kallikrein-8 and the survival factors prosaposin and Grb10. STAT3-specific genes included the apoptosis regulators CCAAT enhancer binding protein-δ, phosphatidylinositol 3-kinase-regulatory subunits, purine nucleoside phosphorylase, and c-fos. These data illustrate that specific activation of STAT3 and STAT5 alone is sufficient to induce and suppress apoptosis, respectively, and that these transcription factors elicit their actions by inducing distinct subsets of target genes in mammary epithelial cells.
ISSN:0888-8809
1944-9917
DOI:10.1210/me.2005-0392