Loading…

Gonadotroph-specific expression of the human follicle stimulating hormone β gene in transgenic mice

A paucity of in vitro models has hampered studies of molecular mechanisms of FSH subunit gene expression. Consequently, we used an in vivo transgenic strategy to map the location of regulatory elements in the cloned 10 kb human FSHβ gene. Analyses of transgenic mouse lines revealed that successive 5...

Full description

Saved in:
Bibliographic Details
Published in:Molecular and cellular endocrinology 2006-03, Vol.247 (1), p.103-115
Main Authors: Kumar, T. Rajendra, Schuff, Kathryn G., Nusser, Kevin D., Low, Malcolm J.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c382t-b0822828464eca4c99fa89bfa0dae9077a12f17752535b0333a7567584d914fe3
cites cdi_FETCH-LOGICAL-c382t-b0822828464eca4c99fa89bfa0dae9077a12f17752535b0333a7567584d914fe3
container_end_page 115
container_issue 1
container_start_page 103
container_title Molecular and cellular endocrinology
container_volume 247
creator Kumar, T. Rajendra
Schuff, Kathryn G.
Nusser, Kevin D.
Low, Malcolm J.
description A paucity of in vitro models has hampered studies of molecular mechanisms of FSH subunit gene expression. Consequently, we used an in vivo transgenic strategy to map the location of regulatory elements in the cloned 10 kb human FSHβ gene. Analyses of transgenic mouse lines revealed that successive 5′ truncations of the hFSHβ promoter region to −350 bp relative to the transcriptional initiation site retained gonadotroph-specific expression and the sexually dimorphic pattern of male greater than female FSHβ mRNA levels found normally in rodent pituitary. Truncation of the 3′ flanking sequences from positions +3142 to +2138 bp relative to the translational stop codon in exon 3 resulted in a complete loss of transgene expression, suggesting the presence of critical regulatory elements mapping to the 1 kb genomic segment downstream of position +2138, in addition to the proximal 5′ promoter elements. In silico phylogenetic comparisons of mammalian FSHβ genes revealed five islands of highly conserved sequence homology corresponding precisely to the proximal 5′ promoter region, exon 2, the 5′ translated region of exon 3, and two regions at the 3′ untranslated end of exon 3 that include putative polyadenylation and transcriptional termination signals. Sequence analyses of the 5′ proximal promoter revealed the presence of several putative homeodomain binding sites as well as GATA, SMAD, AP-1, NF-1, NF-Y and steroid hormone transcription factor binding sites within the highly conserved −350 bp promoter region. Notably absent from these 5′ sequences, however, are consensus binding sites for either Egr-1 or Lim-2 transcription factors known to be critical for the gonadotroph-specific expression of the LHβ gene. These findings support the hypothesis that one of the mechanisms underlying the differential regulation of the LHβ, FSHβ, and common α-gonadotropin subunits within pituitary gonadotrophs may be differences in sequence-specific binding requirements for distinct combinations of transcription factors.
doi_str_mv 10.1016/j.mce.2005.12.006
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_67698718</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0303720705004466</els_id><sourcerecordid>67698718</sourcerecordid><originalsourceid>FETCH-LOGICAL-c382t-b0822828464eca4c99fa89bfa0dae9077a12f17752535b0333a7567584d914fe3</originalsourceid><addsrcrecordid>eNqFkcFq3DAURUVoaaZpPyCbolV3dp8k25LpqoQmKQSySddCIz9lNNiSK9kh-a18SL-pCjOQXbq6PDj3wn2XkHMGNQPWfdvXk8WaA7Q14zVAd0I2TEleKWjlO7IBAaKSHOQp-ZjzHgBky9UHcsq6hjVMiQ0ZrmIwQ1xSnHdVntF65y3Fxzlhzj4GGh1ddkh362QCdXEcvR2R5sVP62gWH-7pLqYpBqR_n-k9FvWBLsmEXI4SNXmLn8h7Z8aMn496Rn5f_ry7uK5ubq9-Xfy4qaxQfKm2oDhXXDVdg9Y0tu-dUf3WGRgM9iClYdwxWTq0ot2CEMLItpOtaoaeNQ7FGfl6yJ1T_LNiXvTks8VxNAHjmnUnu17J0vt_IOuV6JSUBWQH0KaYc0Kn5-Qnk540A_2ygd7rsoF-2UAzrssGxfPlGL5uJxxeHcenF-D7AcDyiwePSWfrMVgcfEK76CH6N-L_AeHrmFI</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>19836877</pqid></control><display><type>article</type><title>Gonadotroph-specific expression of the human follicle stimulating hormone β gene in transgenic mice</title><source>Elsevier:Jisc Collections:Elsevier Read and Publish Agreement 2022-2024:Freedom Collection (Reading list)</source><creator>Kumar, T. Rajendra ; Schuff, Kathryn G. ; Nusser, Kevin D. ; Low, Malcolm J.</creator><creatorcontrib>Kumar, T. Rajendra ; Schuff, Kathryn G. ; Nusser, Kevin D. ; Low, Malcolm J.</creatorcontrib><description>A paucity of in vitro models has hampered studies of molecular mechanisms of FSH subunit gene expression. Consequently, we used an in vivo transgenic strategy to map the location of regulatory elements in the cloned 10 kb human FSHβ gene. Analyses of transgenic mouse lines revealed that successive 5′ truncations of the hFSHβ promoter region to −350 bp relative to the transcriptional initiation site retained gonadotroph-specific expression and the sexually dimorphic pattern of male greater than female FSHβ mRNA levels found normally in rodent pituitary. Truncation of the 3′ flanking sequences from positions +3142 to +2138 bp relative to the translational stop codon in exon 3 resulted in a complete loss of transgene expression, suggesting the presence of critical regulatory elements mapping to the 1 kb genomic segment downstream of position +2138, in addition to the proximal 5′ promoter elements. In silico phylogenetic comparisons of mammalian FSHβ genes revealed five islands of highly conserved sequence homology corresponding precisely to the proximal 5′ promoter region, exon 2, the 5′ translated region of exon 3, and two regions at the 3′ untranslated end of exon 3 that include putative polyadenylation and transcriptional termination signals. Sequence analyses of the 5′ proximal promoter revealed the presence of several putative homeodomain binding sites as well as GATA, SMAD, AP-1, NF-1, NF-Y and steroid hormone transcription factor binding sites within the highly conserved −350 bp promoter region. Notably absent from these 5′ sequences, however, are consensus binding sites for either Egr-1 or Lim-2 transcription factors known to be critical for the gonadotroph-specific expression of the LHβ gene. These findings support the hypothesis that one of the mechanisms underlying the differential regulation of the LHβ, FSHβ, and common α-gonadotropin subunits within pituitary gonadotrophs may be differences in sequence-specific binding requirements for distinct combinations of transcription factors.</description><identifier>ISSN: 0303-7207</identifier><identifier>EISSN: 1872-8057</identifier><identifier>DOI: 10.1016/j.mce.2005.12.006</identifier><identifier>PMID: 16414183</identifier><language>eng</language><publisher>Ireland: Elsevier Ireland Ltd</publisher><subject>3' Flanking Region ; Animals ; Base Sequence ; Codon, Terminator ; Female ; Follicle Stimulating Hormone, beta Subunit - biosynthesis ; Follicle Stimulating Hormone, beta Subunit - genetics ; Follicle Stimulating Hormone, Human - biosynthesis ; Follicle Stimulating Hormone, Human - genetics ; Gene expression ; Gonadotroph ; Humans ; Male ; Mice ; Mice, Transgenic ; Molecular Sequence Data ; Organ Specificity ; Phylogeny ; Pituitary ; Pituitary Gland - metabolism ; Promoter Regions, Genetic ; RNA, Messenger - biosynthesis ; Sequence Homology, Nucleic Acid ; Sex Factors ; SV40 T-antigen</subject><ispartof>Molecular and cellular endocrinology, 2006-03, Vol.247 (1), p.103-115</ispartof><rights>2005 Elsevier Ireland Ltd</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c382t-b0822828464eca4c99fa89bfa0dae9077a12f17752535b0333a7567584d914fe3</citedby><cites>FETCH-LOGICAL-c382t-b0822828464eca4c99fa89bfa0dae9077a12f17752535b0333a7567584d914fe3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/16414183$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Kumar, T. Rajendra</creatorcontrib><creatorcontrib>Schuff, Kathryn G.</creatorcontrib><creatorcontrib>Nusser, Kevin D.</creatorcontrib><creatorcontrib>Low, Malcolm J.</creatorcontrib><title>Gonadotroph-specific expression of the human follicle stimulating hormone β gene in transgenic mice</title><title>Molecular and cellular endocrinology</title><addtitle>Mol Cell Endocrinol</addtitle><description>A paucity of in vitro models has hampered studies of molecular mechanisms of FSH subunit gene expression. Consequently, we used an in vivo transgenic strategy to map the location of regulatory elements in the cloned 10 kb human FSHβ gene. Analyses of transgenic mouse lines revealed that successive 5′ truncations of the hFSHβ promoter region to −350 bp relative to the transcriptional initiation site retained gonadotroph-specific expression and the sexually dimorphic pattern of male greater than female FSHβ mRNA levels found normally in rodent pituitary. Truncation of the 3′ flanking sequences from positions +3142 to +2138 bp relative to the translational stop codon in exon 3 resulted in a complete loss of transgene expression, suggesting the presence of critical regulatory elements mapping to the 1 kb genomic segment downstream of position +2138, in addition to the proximal 5′ promoter elements. In silico phylogenetic comparisons of mammalian FSHβ genes revealed five islands of highly conserved sequence homology corresponding precisely to the proximal 5′ promoter region, exon 2, the 5′ translated region of exon 3, and two regions at the 3′ untranslated end of exon 3 that include putative polyadenylation and transcriptional termination signals. Sequence analyses of the 5′ proximal promoter revealed the presence of several putative homeodomain binding sites as well as GATA, SMAD, AP-1, NF-1, NF-Y and steroid hormone transcription factor binding sites within the highly conserved −350 bp promoter region. Notably absent from these 5′ sequences, however, are consensus binding sites for either Egr-1 or Lim-2 transcription factors known to be critical for the gonadotroph-specific expression of the LHβ gene. These findings support the hypothesis that one of the mechanisms underlying the differential regulation of the LHβ, FSHβ, and common α-gonadotropin subunits within pituitary gonadotrophs may be differences in sequence-specific binding requirements for distinct combinations of transcription factors.</description><subject>3' Flanking Region</subject><subject>Animals</subject><subject>Base Sequence</subject><subject>Codon, Terminator</subject><subject>Female</subject><subject>Follicle Stimulating Hormone, beta Subunit - biosynthesis</subject><subject>Follicle Stimulating Hormone, beta Subunit - genetics</subject><subject>Follicle Stimulating Hormone, Human - biosynthesis</subject><subject>Follicle Stimulating Hormone, Human - genetics</subject><subject>Gene expression</subject><subject>Gonadotroph</subject><subject>Humans</subject><subject>Male</subject><subject>Mice</subject><subject>Mice, Transgenic</subject><subject>Molecular Sequence Data</subject><subject>Organ Specificity</subject><subject>Phylogeny</subject><subject>Pituitary</subject><subject>Pituitary Gland - metabolism</subject><subject>Promoter Regions, Genetic</subject><subject>RNA, Messenger - biosynthesis</subject><subject>Sequence Homology, Nucleic Acid</subject><subject>Sex Factors</subject><subject>SV40 T-antigen</subject><issn>0303-7207</issn><issn>1872-8057</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2006</creationdate><recordtype>article</recordtype><recordid>eNqFkcFq3DAURUVoaaZpPyCbolV3dp8k25LpqoQmKQSySddCIz9lNNiSK9kh-a18SL-pCjOQXbq6PDj3wn2XkHMGNQPWfdvXk8WaA7Q14zVAd0I2TEleKWjlO7IBAaKSHOQp-ZjzHgBky9UHcsq6hjVMiQ0ZrmIwQ1xSnHdVntF65y3Fxzlhzj4GGh1ddkh362QCdXEcvR2R5sVP62gWH-7pLqYpBqR_n-k9FvWBLsmEXI4SNXmLn8h7Z8aMn496Rn5f_ry7uK5ubq9-Xfy4qaxQfKm2oDhXXDVdg9Y0tu-dUf3WGRgM9iClYdwxWTq0ot2CEMLItpOtaoaeNQ7FGfl6yJ1T_LNiXvTks8VxNAHjmnUnu17J0vt_IOuV6JSUBWQH0KaYc0Kn5-Qnk540A_2ygd7rsoF-2UAzrssGxfPlGL5uJxxeHcenF-D7AcDyiwePSWfrMVgcfEK76CH6N-L_AeHrmFI</recordid><startdate>20060309</startdate><enddate>20060309</enddate><creator>Kumar, T. Rajendra</creator><creator>Schuff, Kathryn G.</creator><creator>Nusser, Kevin D.</creator><creator>Low, Malcolm J.</creator><general>Elsevier Ireland Ltd</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QO</scope><scope>7TK</scope><scope>8FD</scope><scope>FR3</scope><scope>P64</scope><scope>RC3</scope><scope>7X8</scope></search><sort><creationdate>20060309</creationdate><title>Gonadotroph-specific expression of the human follicle stimulating hormone β gene in transgenic mice</title><author>Kumar, T. Rajendra ; Schuff, Kathryn G. ; Nusser, Kevin D. ; Low, Malcolm J.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c382t-b0822828464eca4c99fa89bfa0dae9077a12f17752535b0333a7567584d914fe3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2006</creationdate><topic>3' Flanking Region</topic><topic>Animals</topic><topic>Base Sequence</topic><topic>Codon, Terminator</topic><topic>Female</topic><topic>Follicle Stimulating Hormone, beta Subunit - biosynthesis</topic><topic>Follicle Stimulating Hormone, beta Subunit - genetics</topic><topic>Follicle Stimulating Hormone, Human - biosynthesis</topic><topic>Follicle Stimulating Hormone, Human - genetics</topic><topic>Gene expression</topic><topic>Gonadotroph</topic><topic>Humans</topic><topic>Male</topic><topic>Mice</topic><topic>Mice, Transgenic</topic><topic>Molecular Sequence Data</topic><topic>Organ Specificity</topic><topic>Phylogeny</topic><topic>Pituitary</topic><topic>Pituitary Gland - metabolism</topic><topic>Promoter Regions, Genetic</topic><topic>RNA, Messenger - biosynthesis</topic><topic>Sequence Homology, Nucleic Acid</topic><topic>Sex Factors</topic><topic>SV40 T-antigen</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kumar, T. Rajendra</creatorcontrib><creatorcontrib>Schuff, Kathryn G.</creatorcontrib><creatorcontrib>Nusser, Kevin D.</creatorcontrib><creatorcontrib>Low, Malcolm J.</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Biotechnology Research Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>Molecular and cellular endocrinology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kumar, T. Rajendra</au><au>Schuff, Kathryn G.</au><au>Nusser, Kevin D.</au><au>Low, Malcolm J.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Gonadotroph-specific expression of the human follicle stimulating hormone β gene in transgenic mice</atitle><jtitle>Molecular and cellular endocrinology</jtitle><addtitle>Mol Cell Endocrinol</addtitle><date>2006-03-09</date><risdate>2006</risdate><volume>247</volume><issue>1</issue><spage>103</spage><epage>115</epage><pages>103-115</pages><issn>0303-7207</issn><eissn>1872-8057</eissn><abstract>A paucity of in vitro models has hampered studies of molecular mechanisms of FSH subunit gene expression. Consequently, we used an in vivo transgenic strategy to map the location of regulatory elements in the cloned 10 kb human FSHβ gene. Analyses of transgenic mouse lines revealed that successive 5′ truncations of the hFSHβ promoter region to −350 bp relative to the transcriptional initiation site retained gonadotroph-specific expression and the sexually dimorphic pattern of male greater than female FSHβ mRNA levels found normally in rodent pituitary. Truncation of the 3′ flanking sequences from positions +3142 to +2138 bp relative to the translational stop codon in exon 3 resulted in a complete loss of transgene expression, suggesting the presence of critical regulatory elements mapping to the 1 kb genomic segment downstream of position +2138, in addition to the proximal 5′ promoter elements. In silico phylogenetic comparisons of mammalian FSHβ genes revealed five islands of highly conserved sequence homology corresponding precisely to the proximal 5′ promoter region, exon 2, the 5′ translated region of exon 3, and two regions at the 3′ untranslated end of exon 3 that include putative polyadenylation and transcriptional termination signals. Sequence analyses of the 5′ proximal promoter revealed the presence of several putative homeodomain binding sites as well as GATA, SMAD, AP-1, NF-1, NF-Y and steroid hormone transcription factor binding sites within the highly conserved −350 bp promoter region. Notably absent from these 5′ sequences, however, are consensus binding sites for either Egr-1 or Lim-2 transcription factors known to be critical for the gonadotroph-specific expression of the LHβ gene. These findings support the hypothesis that one of the mechanisms underlying the differential regulation of the LHβ, FSHβ, and common α-gonadotropin subunits within pituitary gonadotrophs may be differences in sequence-specific binding requirements for distinct combinations of transcription factors.</abstract><cop>Ireland</cop><pub>Elsevier Ireland Ltd</pub><pmid>16414183</pmid><doi>10.1016/j.mce.2005.12.006</doi><tpages>13</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0303-7207
ispartof Molecular and cellular endocrinology, 2006-03, Vol.247 (1), p.103-115
issn 0303-7207
1872-8057
language eng
recordid cdi_proquest_miscellaneous_67698718
source Elsevier:Jisc Collections:Elsevier Read and Publish Agreement 2022-2024:Freedom Collection (Reading list)
subjects 3' Flanking Region
Animals
Base Sequence
Codon, Terminator
Female
Follicle Stimulating Hormone, beta Subunit - biosynthesis
Follicle Stimulating Hormone, beta Subunit - genetics
Follicle Stimulating Hormone, Human - biosynthesis
Follicle Stimulating Hormone, Human - genetics
Gene expression
Gonadotroph
Humans
Male
Mice
Mice, Transgenic
Molecular Sequence Data
Organ Specificity
Phylogeny
Pituitary
Pituitary Gland - metabolism
Promoter Regions, Genetic
RNA, Messenger - biosynthesis
Sequence Homology, Nucleic Acid
Sex Factors
SV40 T-antigen
title Gonadotroph-specific expression of the human follicle stimulating hormone β gene in transgenic mice
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-27T22%3A22%3A24IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Gonadotroph-specific%20expression%20of%20the%20human%20follicle%20stimulating%20hormone%20%CE%B2%20gene%20in%20transgenic%20mice&rft.jtitle=Molecular%20and%20cellular%20endocrinology&rft.au=Kumar,%20T.%20Rajendra&rft.date=2006-03-09&rft.volume=247&rft.issue=1&rft.spage=103&rft.epage=115&rft.pages=103-115&rft.issn=0303-7207&rft.eissn=1872-8057&rft_id=info:doi/10.1016/j.mce.2005.12.006&rft_dat=%3Cproquest_cross%3E67698718%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c382t-b0822828464eca4c99fa89bfa0dae9077a12f17752535b0333a7567584d914fe3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=19836877&rft_id=info:pmid/16414183&rfr_iscdi=true