Loading…

Microsomal Triglyceride Transfer Protein Promotes the Secretion of Xenopus laevis Vitellogenin A1

Vitellogenins (Vtg) are ancient lipid transport and storage proteins and members of the large lipid transfer protein (LLTP) gene family, which includes insect apolipophorin II/I, apolipoprotein B (apoB), and the microsomal triglyceride transfer protein (MTP). Lipidation of Vtg occurs at its site of...

Full description

Saved in:
Bibliographic Details
Published in:The Journal of biological chemistry 2005-04, Vol.280 (14), p.13902-13905
Main Authors: Sellers, Jeremy A., Hou, Li, Schoenberg, Daniel R., Batistuzzo de Medeiros, Silvia R., Wahli, Walter, Shelness, Gregory S.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Vitellogenins (Vtg) are ancient lipid transport and storage proteins and members of the large lipid transfer protein (LLTP) gene family, which includes insect apolipophorin II/I, apolipoprotein B (apoB), and the microsomal triglyceride transfer protein (MTP). Lipidation of Vtg occurs at its site of synthesis in vertebrate liver, insect fat body, and nematode intestine; however, the mechanism of Vtg lipid acquisition is unknown. To explore whether Vtg biogenesis requires the apoB cofactor and LLTP family member, MTP, Vtg was expressed in COS cells with and without coexpression of the 97-kDa subunit of human MTP. Expression of Vtg alone gave rise to a ∼220-kDa apoprotein, which was predominantly confined to an intracellular location. Coexpression of Vtg with human MTP enhanced Vtg secretion by 5-fold, without dramatically affecting its intracellular stability. A comparison of wild type and a triglyceride transfer-defective form of MTP revealed that both were capable of promoting Vtg secretion, whereas only wild type MTP could promote the secretion of apoB41 (amino-terminal 41% of apoB). These studies demonstrate that the biogenesis of Vtg is MTP-dependent and that MTP is the likely ancestral member of the LLTP gene family.
ISSN:0021-9258
1083-351X
DOI:10.1074/jbc.M500769200