Loading…
Phenotype properties of a novel spontaneously immortalized odontoblast-lineage cell line
Here we report on the spontaneous immortalization upon serial passages of mouse fetal dental papilla cells, which present odontoblast phenotype features. The cells named odontoblast-lineage cell (OLC) produced dentin extracellular matrix proteins, such as DSP and DMP1, and maintained transcripts of...
Saved in:
Published in: | Biochemical and biophysical research communications 2006-04, Vol.342 (3), p.718-724 |
---|---|
Main Authors: | , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Here we report on the spontaneous immortalization upon serial passages of mouse fetal dental papilla cells, which present odontoblast phenotype features. The cells named odontoblast-lineage cell (OLC) produced dentin extracellular matrix proteins, such as DSP and DMP1, and maintained transcripts of various matrix components as osteopontin, BMP-4, procollagen-1, and MEPE. The addition of osteogenic differentiation medium with β-glycerophosphate and ascorbic acid was effective for inducing calcification and mineralization in vitro in cell cultures for up to 28 days. For the first time, we investigated the expression of Lhx6 and Lhx7 genes during induced biomineralization, since these new members of LIM homeodomain proteins have been recently proposed tracking odontoblastic phenotypes. Our results indicate that β-glycerophosphate treatment of OLC cultures decreases Lhx6 transcript levels in vitro. Our findings proved odontoblast phenotype-specificity, which demonstrates that this novel odontoblast-lineage cell line is a valuable tool for future experiments in odontology. |
---|---|
ISSN: | 0006-291X 1090-2104 |
DOI: | 10.1016/j.bbrc.2006.02.020 |