Loading…

High Basal Protein Kinase A–Dependent Phosphorylation Drives Rhythmic Internal Ca2+ Store Oscillations and Spontaneous Beating of Cardiac Pacemaker Cells

Local, rhythmic, subsarcolemmal Ca releases (LCRs) from the sarcoplasmic reticulum (SR) during diastolic depolarization in sinoatrial nodal cells (SANC) occur even in the basal state and activate an inward Na-Ca exchanger current that affects spontaneous beating. Why SANC can generate spontaneous LC...

Full description

Saved in:
Bibliographic Details
Published in:Circulation research 2006-03, Vol.98 (4), p.505-514
Main Authors: Vinogradova, Tatiana M, Lyashkov, Alexey E, Zhu, Weizhong, Ruknudin, Abdul M, Sirenko, Syevda, Yang, Dongmei, Deo, Shekhar, Barlow, Matthew, Johnson, Shavsha, Caffrey, James L, Zhou, Ying-Ying, Xiao, Rui-Ping, Cheng, Heping, Stern, Michael D, Maltsev, Victor A, Lakatta, Edward G
Format: Article
Language:English
Subjects:
Citations: Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c3735-67aa00687ea9f77f049cfb98854f231787f94c48ead75cc7d96eb52d376dfcce3
cites
container_end_page 514
container_issue 4
container_start_page 505
container_title Circulation research
container_volume 98
creator Vinogradova, Tatiana M
Lyashkov, Alexey E
Zhu, Weizhong
Ruknudin, Abdul M
Sirenko, Syevda
Yang, Dongmei
Deo, Shekhar
Barlow, Matthew
Johnson, Shavsha
Caffrey, James L
Zhou, Ying-Ying
Xiao, Rui-Ping
Cheng, Heping
Stern, Michael D
Maltsev, Victor A
Lakatta, Edward G
description Local, rhythmic, subsarcolemmal Ca releases (LCRs) from the sarcoplasmic reticulum (SR) during diastolic depolarization in sinoatrial nodal cells (SANC) occur even in the basal state and activate an inward Na-Ca exchanger current that affects spontaneous beating. Why SANC can generate spontaneous LCRs under basal conditions, whereas ventricular cells cannot, has not previously been explained. Here we show that a high basal cAMP level of isolated rabbit SANC and its attendant increase in protein kinase A (PKA)-dependent phosphorylation are obligatory for the occurrence of spontaneous, basal LCRs and for spontaneous beating. Gradations in basal PKA activity, indexed by gradations in phospholamban phosphorylation effected by a specific PKA inhibitory peptide were highly correlated with concomitant gradations in LCR spatiotemporal synchronization and phase, as well as beating rate. Higher levels of basal PKA inhibition abolish LCRs and spontaneous beating ceases. Stimulation of β-adrenergic receptors extends the range of PKA-dependent control of LCRs and beating rate beyond that in the basal state. The link between SR Ca cycling and beating rate is also present in vivo, as the regulation of beating rate by local β-adrenergic receptor stimulation of the sinoatrial node in intact dogs is markedly blunted when SR Ca cycling is disrupted by ryanodine. Thus, PKA-dependent phosphorylation of proteins that regulate cell Ca balance and spontaneous SR Ca cycling, ie, phospholamban and L-type Ca channels (and likely others not measured in this study), controls the phase and size of LCRs and the resultant Na-Ca exchanger current and is crucial for both basal and reserve cardiac pacemaker function.
doi_str_mv 10.1161/01.RES.0000204575.94040.d1
format article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_proquest_miscellaneous_67716914</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>67716914</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3735-67aa00687ea9f77f049cfb98854f231787f94c48ead75cc7d96eb52d376dfcce3</originalsourceid><addsrcrecordid>eNpFkc1u1DAQxy0EosvCKyALCS4owY6_kmO7LbSiUlddOEdeZ9KYOnZqZ6n2xjtw5O14Eox2EXOZ0cxvRjP_QegNJSWlkn4gtLy92JQkW0W4UKJsOOGk7OgTtKCi4kVO0qdokYGmUIyRE_QipW-EUM6q5jk6oZJXnEmxQL8u7d2Az3TSDq9jmMF6_Nl6nQCf_v7x8xwm8B34Ga-HkKYhxL3Tsw0en0f7HRK-HfbzMFqDr_wM0ecpK129x5s5RMA3yVh34BPWvsObKfhZewi7hM8gF_wdDn1uiZ3VBq-1gVHfQ8QrcC69RM967RK8Ovol-vrx4svqsri--XS1Or0uDFNMFFJpTYisFeimV6onvDH9tqlrwfuKUVWrvuGG16A7JYxRXSNhK6qOKdn1xgBboneHuVMMDztIczvaZPIGh01bqRSVTdZuiV4fwd12hK6doh113Lf_5MzA2yOgk9Guj9obm_5zSiglBckcP3CPwWXZ0r3bPUJsB9BuHtq_j2WEVkWVz8oRI0XOUMH-AA_rmNM</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>67716914</pqid></control><display><type>article</type><title>High Basal Protein Kinase A–Dependent Phosphorylation Drives Rhythmic Internal Ca2+ Store Oscillations and Spontaneous Beating of Cardiac Pacemaker Cells</title><source>Freely Accessible Science Journals - check A-Z of ejournals</source><creator>Vinogradova, Tatiana M ; Lyashkov, Alexey E ; Zhu, Weizhong ; Ruknudin, Abdul M ; Sirenko, Syevda ; Yang, Dongmei ; Deo, Shekhar ; Barlow, Matthew ; Johnson, Shavsha ; Caffrey, James L ; Zhou, Ying-Ying ; Xiao, Rui-Ping ; Cheng, Heping ; Stern, Michael D ; Maltsev, Victor A ; Lakatta, Edward G</creator><creatorcontrib>Vinogradova, Tatiana M ; Lyashkov, Alexey E ; Zhu, Weizhong ; Ruknudin, Abdul M ; Sirenko, Syevda ; Yang, Dongmei ; Deo, Shekhar ; Barlow, Matthew ; Johnson, Shavsha ; Caffrey, James L ; Zhou, Ying-Ying ; Xiao, Rui-Ping ; Cheng, Heping ; Stern, Michael D ; Maltsev, Victor A ; Lakatta, Edward G</creatorcontrib><description>Local, rhythmic, subsarcolemmal Ca releases (LCRs) from the sarcoplasmic reticulum (SR) during diastolic depolarization in sinoatrial nodal cells (SANC) occur even in the basal state and activate an inward Na-Ca exchanger current that affects spontaneous beating. Why SANC can generate spontaneous LCRs under basal conditions, whereas ventricular cells cannot, has not previously been explained. Here we show that a high basal cAMP level of isolated rabbit SANC and its attendant increase in protein kinase A (PKA)-dependent phosphorylation are obligatory for the occurrence of spontaneous, basal LCRs and for spontaneous beating. Gradations in basal PKA activity, indexed by gradations in phospholamban phosphorylation effected by a specific PKA inhibitory peptide were highly correlated with concomitant gradations in LCR spatiotemporal synchronization and phase, as well as beating rate. Higher levels of basal PKA inhibition abolish LCRs and spontaneous beating ceases. Stimulation of β-adrenergic receptors extends the range of PKA-dependent control of LCRs and beating rate beyond that in the basal state. The link between SR Ca cycling and beating rate is also present in vivo, as the regulation of beating rate by local β-adrenergic receptor stimulation of the sinoatrial node in intact dogs is markedly blunted when SR Ca cycling is disrupted by ryanodine. Thus, PKA-dependent phosphorylation of proteins that regulate cell Ca balance and spontaneous SR Ca cycling, ie, phospholamban and L-type Ca channels (and likely others not measured in this study), controls the phase and size of LCRs and the resultant Na-Ca exchanger current and is crucial for both basal and reserve cardiac pacemaker function.</description><identifier>ISSN: 0009-7330</identifier><identifier>EISSN: 1524-4571</identifier><identifier>DOI: 10.1161/01.RES.0000204575.94040.d1</identifier><identifier>PMID: 16424365</identifier><identifier>CODEN: CIRUAL</identifier><language>eng</language><publisher>Hagerstown, MD: American Heart Association, Inc</publisher><subject>Action Potentials ; Animals ; Biological and medical sciences ; Calcium - metabolism ; Calcium Signaling ; Cyclic AMP - physiology ; Cyclic AMP-Dependent Protein Kinases - physiology ; Diastole - physiology ; Fundamental and applied biological sciences. Psychology ; Myocardial Contraction ; Myocytes, Cardiac - physiology ; Phosphorylation ; Rabbits ; Receptors, Adrenergic, beta - physiology ; Ryanodine Receptor Calcium Release Channel ; Sarcoplasmic Reticulum - metabolism ; Signal Transduction - physiology ; Sinoatrial Node - cytology ; Sinoatrial Node - physiology ; Sodium-Calcium Exchanger - physiology ; Vertebrates: cardiovascular system</subject><ispartof>Circulation research, 2006-03, Vol.98 (4), p.505-514</ispartof><rights>2006 American Heart Association, Inc.</rights><rights>2006 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3735-67aa00687ea9f77f049cfb98854f231787f94c48ead75cc7d96eb52d376dfcce3</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=17577650$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/16424365$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Vinogradova, Tatiana M</creatorcontrib><creatorcontrib>Lyashkov, Alexey E</creatorcontrib><creatorcontrib>Zhu, Weizhong</creatorcontrib><creatorcontrib>Ruknudin, Abdul M</creatorcontrib><creatorcontrib>Sirenko, Syevda</creatorcontrib><creatorcontrib>Yang, Dongmei</creatorcontrib><creatorcontrib>Deo, Shekhar</creatorcontrib><creatorcontrib>Barlow, Matthew</creatorcontrib><creatorcontrib>Johnson, Shavsha</creatorcontrib><creatorcontrib>Caffrey, James L</creatorcontrib><creatorcontrib>Zhou, Ying-Ying</creatorcontrib><creatorcontrib>Xiao, Rui-Ping</creatorcontrib><creatorcontrib>Cheng, Heping</creatorcontrib><creatorcontrib>Stern, Michael D</creatorcontrib><creatorcontrib>Maltsev, Victor A</creatorcontrib><creatorcontrib>Lakatta, Edward G</creatorcontrib><title>High Basal Protein Kinase A–Dependent Phosphorylation Drives Rhythmic Internal Ca2+ Store Oscillations and Spontaneous Beating of Cardiac Pacemaker Cells</title><title>Circulation research</title><addtitle>Circ Res</addtitle><description>Local, rhythmic, subsarcolemmal Ca releases (LCRs) from the sarcoplasmic reticulum (SR) during diastolic depolarization in sinoatrial nodal cells (SANC) occur even in the basal state and activate an inward Na-Ca exchanger current that affects spontaneous beating. Why SANC can generate spontaneous LCRs under basal conditions, whereas ventricular cells cannot, has not previously been explained. Here we show that a high basal cAMP level of isolated rabbit SANC and its attendant increase in protein kinase A (PKA)-dependent phosphorylation are obligatory for the occurrence of spontaneous, basal LCRs and for spontaneous beating. Gradations in basal PKA activity, indexed by gradations in phospholamban phosphorylation effected by a specific PKA inhibitory peptide were highly correlated with concomitant gradations in LCR spatiotemporal synchronization and phase, as well as beating rate. Higher levels of basal PKA inhibition abolish LCRs and spontaneous beating ceases. Stimulation of β-adrenergic receptors extends the range of PKA-dependent control of LCRs and beating rate beyond that in the basal state. The link between SR Ca cycling and beating rate is also present in vivo, as the regulation of beating rate by local β-adrenergic receptor stimulation of the sinoatrial node in intact dogs is markedly blunted when SR Ca cycling is disrupted by ryanodine. Thus, PKA-dependent phosphorylation of proteins that regulate cell Ca balance and spontaneous SR Ca cycling, ie, phospholamban and L-type Ca channels (and likely others not measured in this study), controls the phase and size of LCRs and the resultant Na-Ca exchanger current and is crucial for both basal and reserve cardiac pacemaker function.</description><subject>Action Potentials</subject><subject>Animals</subject><subject>Biological and medical sciences</subject><subject>Calcium - metabolism</subject><subject>Calcium Signaling</subject><subject>Cyclic AMP - physiology</subject><subject>Cyclic AMP-Dependent Protein Kinases - physiology</subject><subject>Diastole - physiology</subject><subject>Fundamental and applied biological sciences. Psychology</subject><subject>Myocardial Contraction</subject><subject>Myocytes, Cardiac - physiology</subject><subject>Phosphorylation</subject><subject>Rabbits</subject><subject>Receptors, Adrenergic, beta - physiology</subject><subject>Ryanodine Receptor Calcium Release Channel</subject><subject>Sarcoplasmic Reticulum - metabolism</subject><subject>Signal Transduction - physiology</subject><subject>Sinoatrial Node - cytology</subject><subject>Sinoatrial Node - physiology</subject><subject>Sodium-Calcium Exchanger - physiology</subject><subject>Vertebrates: cardiovascular system</subject><issn>0009-7330</issn><issn>1524-4571</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2006</creationdate><recordtype>article</recordtype><recordid>eNpFkc1u1DAQxy0EosvCKyALCS4owY6_kmO7LbSiUlddOEdeZ9KYOnZqZ6n2xjtw5O14Eox2EXOZ0cxvRjP_QegNJSWlkn4gtLy92JQkW0W4UKJsOOGk7OgTtKCi4kVO0qdokYGmUIyRE_QipW-EUM6q5jk6oZJXnEmxQL8u7d2Az3TSDq9jmMF6_Nl6nQCf_v7x8xwm8B34Ga-HkKYhxL3Tsw0en0f7HRK-HfbzMFqDr_wM0ecpK129x5s5RMA3yVh34BPWvsObKfhZewi7hM8gF_wdDn1uiZ3VBq-1gVHfQ8QrcC69RM967RK8Ovol-vrx4svqsri--XS1Or0uDFNMFFJpTYisFeimV6onvDH9tqlrwfuKUVWrvuGG16A7JYxRXSNhK6qOKdn1xgBboneHuVMMDztIczvaZPIGh01bqRSVTdZuiV4fwd12hK6doh113Lf_5MzA2yOgk9Guj9obm_5zSiglBckcP3CPwWXZ0r3bPUJsB9BuHtq_j2WEVkWVz8oRI0XOUMH-AA_rmNM</recordid><startdate>20060303</startdate><enddate>20060303</enddate><creator>Vinogradova, Tatiana M</creator><creator>Lyashkov, Alexey E</creator><creator>Zhu, Weizhong</creator><creator>Ruknudin, Abdul M</creator><creator>Sirenko, Syevda</creator><creator>Yang, Dongmei</creator><creator>Deo, Shekhar</creator><creator>Barlow, Matthew</creator><creator>Johnson, Shavsha</creator><creator>Caffrey, James L</creator><creator>Zhou, Ying-Ying</creator><creator>Xiao, Rui-Ping</creator><creator>Cheng, Heping</creator><creator>Stern, Michael D</creator><creator>Maltsev, Victor A</creator><creator>Lakatta, Edward G</creator><general>American Heart Association, Inc</general><general>Lippincott</general><scope>IQODW</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>7X8</scope></search><sort><creationdate>20060303</creationdate><title>High Basal Protein Kinase A–Dependent Phosphorylation Drives Rhythmic Internal Ca2+ Store Oscillations and Spontaneous Beating of Cardiac Pacemaker Cells</title><author>Vinogradova, Tatiana M ; Lyashkov, Alexey E ; Zhu, Weizhong ; Ruknudin, Abdul M ; Sirenko, Syevda ; Yang, Dongmei ; Deo, Shekhar ; Barlow, Matthew ; Johnson, Shavsha ; Caffrey, James L ; Zhou, Ying-Ying ; Xiao, Rui-Ping ; Cheng, Heping ; Stern, Michael D ; Maltsev, Victor A ; Lakatta, Edward G</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3735-67aa00687ea9f77f049cfb98854f231787f94c48ead75cc7d96eb52d376dfcce3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2006</creationdate><topic>Action Potentials</topic><topic>Animals</topic><topic>Biological and medical sciences</topic><topic>Calcium - metabolism</topic><topic>Calcium Signaling</topic><topic>Cyclic AMP - physiology</topic><topic>Cyclic AMP-Dependent Protein Kinases - physiology</topic><topic>Diastole - physiology</topic><topic>Fundamental and applied biological sciences. Psychology</topic><topic>Myocardial Contraction</topic><topic>Myocytes, Cardiac - physiology</topic><topic>Phosphorylation</topic><topic>Rabbits</topic><topic>Receptors, Adrenergic, beta - physiology</topic><topic>Ryanodine Receptor Calcium Release Channel</topic><topic>Sarcoplasmic Reticulum - metabolism</topic><topic>Signal Transduction - physiology</topic><topic>Sinoatrial Node - cytology</topic><topic>Sinoatrial Node - physiology</topic><topic>Sodium-Calcium Exchanger - physiology</topic><topic>Vertebrates: cardiovascular system</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Vinogradova, Tatiana M</creatorcontrib><creatorcontrib>Lyashkov, Alexey E</creatorcontrib><creatorcontrib>Zhu, Weizhong</creatorcontrib><creatorcontrib>Ruknudin, Abdul M</creatorcontrib><creatorcontrib>Sirenko, Syevda</creatorcontrib><creatorcontrib>Yang, Dongmei</creatorcontrib><creatorcontrib>Deo, Shekhar</creatorcontrib><creatorcontrib>Barlow, Matthew</creatorcontrib><creatorcontrib>Johnson, Shavsha</creatorcontrib><creatorcontrib>Caffrey, James L</creatorcontrib><creatorcontrib>Zhou, Ying-Ying</creatorcontrib><creatorcontrib>Xiao, Rui-Ping</creatorcontrib><creatorcontrib>Cheng, Heping</creatorcontrib><creatorcontrib>Stern, Michael D</creatorcontrib><creatorcontrib>Maltsev, Victor A</creatorcontrib><creatorcontrib>Lakatta, Edward G</creatorcontrib><collection>Pascal-Francis</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>MEDLINE - Academic</collection><jtitle>Circulation research</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Vinogradova, Tatiana M</au><au>Lyashkov, Alexey E</au><au>Zhu, Weizhong</au><au>Ruknudin, Abdul M</au><au>Sirenko, Syevda</au><au>Yang, Dongmei</au><au>Deo, Shekhar</au><au>Barlow, Matthew</au><au>Johnson, Shavsha</au><au>Caffrey, James L</au><au>Zhou, Ying-Ying</au><au>Xiao, Rui-Ping</au><au>Cheng, Heping</au><au>Stern, Michael D</au><au>Maltsev, Victor A</au><au>Lakatta, Edward G</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>High Basal Protein Kinase A–Dependent Phosphorylation Drives Rhythmic Internal Ca2+ Store Oscillations and Spontaneous Beating of Cardiac Pacemaker Cells</atitle><jtitle>Circulation research</jtitle><addtitle>Circ Res</addtitle><date>2006-03-03</date><risdate>2006</risdate><volume>98</volume><issue>4</issue><spage>505</spage><epage>514</epage><pages>505-514</pages><issn>0009-7330</issn><eissn>1524-4571</eissn><coden>CIRUAL</coden><abstract>Local, rhythmic, subsarcolemmal Ca releases (LCRs) from the sarcoplasmic reticulum (SR) during diastolic depolarization in sinoatrial nodal cells (SANC) occur even in the basal state and activate an inward Na-Ca exchanger current that affects spontaneous beating. Why SANC can generate spontaneous LCRs under basal conditions, whereas ventricular cells cannot, has not previously been explained. Here we show that a high basal cAMP level of isolated rabbit SANC and its attendant increase in protein kinase A (PKA)-dependent phosphorylation are obligatory for the occurrence of spontaneous, basal LCRs and for spontaneous beating. Gradations in basal PKA activity, indexed by gradations in phospholamban phosphorylation effected by a specific PKA inhibitory peptide were highly correlated with concomitant gradations in LCR spatiotemporal synchronization and phase, as well as beating rate. Higher levels of basal PKA inhibition abolish LCRs and spontaneous beating ceases. Stimulation of β-adrenergic receptors extends the range of PKA-dependent control of LCRs and beating rate beyond that in the basal state. The link between SR Ca cycling and beating rate is also present in vivo, as the regulation of beating rate by local β-adrenergic receptor stimulation of the sinoatrial node in intact dogs is markedly blunted when SR Ca cycling is disrupted by ryanodine. Thus, PKA-dependent phosphorylation of proteins that regulate cell Ca balance and spontaneous SR Ca cycling, ie, phospholamban and L-type Ca channels (and likely others not measured in this study), controls the phase and size of LCRs and the resultant Na-Ca exchanger current and is crucial for both basal and reserve cardiac pacemaker function.</abstract><cop>Hagerstown, MD</cop><pub>American Heart Association, Inc</pub><pmid>16424365</pmid><doi>10.1161/01.RES.0000204575.94040.d1</doi><tpages>10</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0009-7330
ispartof Circulation research, 2006-03, Vol.98 (4), p.505-514
issn 0009-7330
1524-4571
language eng
recordid cdi_proquest_miscellaneous_67716914
source Freely Accessible Science Journals - check A-Z of ejournals
subjects Action Potentials
Animals
Biological and medical sciences
Calcium - metabolism
Calcium Signaling
Cyclic AMP - physiology
Cyclic AMP-Dependent Protein Kinases - physiology
Diastole - physiology
Fundamental and applied biological sciences. Psychology
Myocardial Contraction
Myocytes, Cardiac - physiology
Phosphorylation
Rabbits
Receptors, Adrenergic, beta - physiology
Ryanodine Receptor Calcium Release Channel
Sarcoplasmic Reticulum - metabolism
Signal Transduction - physiology
Sinoatrial Node - cytology
Sinoatrial Node - physiology
Sodium-Calcium Exchanger - physiology
Vertebrates: cardiovascular system
title High Basal Protein Kinase A–Dependent Phosphorylation Drives Rhythmic Internal Ca2+ Store Oscillations and Spontaneous Beating of Cardiac Pacemaker Cells
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-07T23%3A14%3A25IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=High%20Basal%20Protein%20Kinase%20A%E2%80%93Dependent%20Phosphorylation%20Drives%20Rhythmic%20Internal%20Ca2+%20Store%20Oscillations%20and%20Spontaneous%20Beating%20of%20Cardiac%20Pacemaker%20Cells&rft.jtitle=Circulation%20research&rft.au=Vinogradova,%20Tatiana%20M&rft.date=2006-03-03&rft.volume=98&rft.issue=4&rft.spage=505&rft.epage=514&rft.pages=505-514&rft.issn=0009-7330&rft.eissn=1524-4571&rft.coden=CIRUAL&rft_id=info:doi/10.1161/01.RES.0000204575.94040.d1&rft_dat=%3Cproquest_pubme%3E67716914%3C/proquest_pubme%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c3735-67aa00687ea9f77f049cfb98854f231787f94c48ead75cc7d96eb52d376dfcce3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=67716914&rft_id=info:pmid/16424365&rfr_iscdi=true