Loading…
High Basal Protein Kinase A–Dependent Phosphorylation Drives Rhythmic Internal Ca2+ Store Oscillations and Spontaneous Beating of Cardiac Pacemaker Cells
Local, rhythmic, subsarcolemmal Ca releases (LCRs) from the sarcoplasmic reticulum (SR) during diastolic depolarization in sinoatrial nodal cells (SANC) occur even in the basal state and activate an inward Na-Ca exchanger current that affects spontaneous beating. Why SANC can generate spontaneous LC...
Saved in:
Published in: | Circulation research 2006-03, Vol.98 (4), p.505-514 |
---|---|
Main Authors: | , , , , , , , , , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c3735-67aa00687ea9f77f049cfb98854f231787f94c48ead75cc7d96eb52d376dfcce3 |
---|---|
cites | |
container_end_page | 514 |
container_issue | 4 |
container_start_page | 505 |
container_title | Circulation research |
container_volume | 98 |
creator | Vinogradova, Tatiana M Lyashkov, Alexey E Zhu, Weizhong Ruknudin, Abdul M Sirenko, Syevda Yang, Dongmei Deo, Shekhar Barlow, Matthew Johnson, Shavsha Caffrey, James L Zhou, Ying-Ying Xiao, Rui-Ping Cheng, Heping Stern, Michael D Maltsev, Victor A Lakatta, Edward G |
description | Local, rhythmic, subsarcolemmal Ca releases (LCRs) from the sarcoplasmic reticulum (SR) during diastolic depolarization in sinoatrial nodal cells (SANC) occur even in the basal state and activate an inward Na-Ca exchanger current that affects spontaneous beating. Why SANC can generate spontaneous LCRs under basal conditions, whereas ventricular cells cannot, has not previously been explained. Here we show that a high basal cAMP level of isolated rabbit SANC and its attendant increase in protein kinase A (PKA)-dependent phosphorylation are obligatory for the occurrence of spontaneous, basal LCRs and for spontaneous beating. Gradations in basal PKA activity, indexed by gradations in phospholamban phosphorylation effected by a specific PKA inhibitory peptide were highly correlated with concomitant gradations in LCR spatiotemporal synchronization and phase, as well as beating rate. Higher levels of basal PKA inhibition abolish LCRs and spontaneous beating ceases. Stimulation of β-adrenergic receptors extends the range of PKA-dependent control of LCRs and beating rate beyond that in the basal state. The link between SR Ca cycling and beating rate is also present in vivo, as the regulation of beating rate by local β-adrenergic receptor stimulation of the sinoatrial node in intact dogs is markedly blunted when SR Ca cycling is disrupted by ryanodine. Thus, PKA-dependent phosphorylation of proteins that regulate cell Ca balance and spontaneous SR Ca cycling, ie, phospholamban and L-type Ca channels (and likely others not measured in this study), controls the phase and size of LCRs and the resultant Na-Ca exchanger current and is crucial for both basal and reserve cardiac pacemaker function. |
doi_str_mv | 10.1161/01.RES.0000204575.94040.d1 |
format | article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_proquest_miscellaneous_67716914</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>67716914</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3735-67aa00687ea9f77f049cfb98854f231787f94c48ead75cc7d96eb52d376dfcce3</originalsourceid><addsrcrecordid>eNpFkc1u1DAQxy0EosvCKyALCS4owY6_kmO7LbSiUlddOEdeZ9KYOnZqZ6n2xjtw5O14Eox2EXOZ0cxvRjP_QegNJSWlkn4gtLy92JQkW0W4UKJsOOGk7OgTtKCi4kVO0qdokYGmUIyRE_QipW-EUM6q5jk6oZJXnEmxQL8u7d2Az3TSDq9jmMF6_Nl6nQCf_v7x8xwm8B34Ga-HkKYhxL3Tsw0en0f7HRK-HfbzMFqDr_wM0ecpK129x5s5RMA3yVh34BPWvsObKfhZewi7hM8gF_wdDn1uiZ3VBq-1gVHfQ8QrcC69RM967RK8Ovol-vrx4svqsri--XS1Or0uDFNMFFJpTYisFeimV6onvDH9tqlrwfuKUVWrvuGG16A7JYxRXSNhK6qOKdn1xgBboneHuVMMDztIczvaZPIGh01bqRSVTdZuiV4fwd12hK6doh113Lf_5MzA2yOgk9Guj9obm_5zSiglBckcP3CPwWXZ0r3bPUJsB9BuHtq_j2WEVkWVz8oRI0XOUMH-AA_rmNM</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>67716914</pqid></control><display><type>article</type><title>High Basal Protein Kinase A–Dependent Phosphorylation Drives Rhythmic Internal Ca2+ Store Oscillations and Spontaneous Beating of Cardiac Pacemaker Cells</title><source>Freely Accessible Science Journals - check A-Z of ejournals</source><creator>Vinogradova, Tatiana M ; Lyashkov, Alexey E ; Zhu, Weizhong ; Ruknudin, Abdul M ; Sirenko, Syevda ; Yang, Dongmei ; Deo, Shekhar ; Barlow, Matthew ; Johnson, Shavsha ; Caffrey, James L ; Zhou, Ying-Ying ; Xiao, Rui-Ping ; Cheng, Heping ; Stern, Michael D ; Maltsev, Victor A ; Lakatta, Edward G</creator><creatorcontrib>Vinogradova, Tatiana M ; Lyashkov, Alexey E ; Zhu, Weizhong ; Ruknudin, Abdul M ; Sirenko, Syevda ; Yang, Dongmei ; Deo, Shekhar ; Barlow, Matthew ; Johnson, Shavsha ; Caffrey, James L ; Zhou, Ying-Ying ; Xiao, Rui-Ping ; Cheng, Heping ; Stern, Michael D ; Maltsev, Victor A ; Lakatta, Edward G</creatorcontrib><description>Local, rhythmic, subsarcolemmal Ca releases (LCRs) from the sarcoplasmic reticulum (SR) during diastolic depolarization in sinoatrial nodal cells (SANC) occur even in the basal state and activate an inward Na-Ca exchanger current that affects spontaneous beating. Why SANC can generate spontaneous LCRs under basal conditions, whereas ventricular cells cannot, has not previously been explained. Here we show that a high basal cAMP level of isolated rabbit SANC and its attendant increase in protein kinase A (PKA)-dependent phosphorylation are obligatory for the occurrence of spontaneous, basal LCRs and for spontaneous beating. Gradations in basal PKA activity, indexed by gradations in phospholamban phosphorylation effected by a specific PKA inhibitory peptide were highly correlated with concomitant gradations in LCR spatiotemporal synchronization and phase, as well as beating rate. Higher levels of basal PKA inhibition abolish LCRs and spontaneous beating ceases. Stimulation of β-adrenergic receptors extends the range of PKA-dependent control of LCRs and beating rate beyond that in the basal state. The link between SR Ca cycling and beating rate is also present in vivo, as the regulation of beating rate by local β-adrenergic receptor stimulation of the sinoatrial node in intact dogs is markedly blunted when SR Ca cycling is disrupted by ryanodine. Thus, PKA-dependent phosphorylation of proteins that regulate cell Ca balance and spontaneous SR Ca cycling, ie, phospholamban and L-type Ca channels (and likely others not measured in this study), controls the phase and size of LCRs and the resultant Na-Ca exchanger current and is crucial for both basal and reserve cardiac pacemaker function.</description><identifier>ISSN: 0009-7330</identifier><identifier>EISSN: 1524-4571</identifier><identifier>DOI: 10.1161/01.RES.0000204575.94040.d1</identifier><identifier>PMID: 16424365</identifier><identifier>CODEN: CIRUAL</identifier><language>eng</language><publisher>Hagerstown, MD: American Heart Association, Inc</publisher><subject>Action Potentials ; Animals ; Biological and medical sciences ; Calcium - metabolism ; Calcium Signaling ; Cyclic AMP - physiology ; Cyclic AMP-Dependent Protein Kinases - physiology ; Diastole - physiology ; Fundamental and applied biological sciences. Psychology ; Myocardial Contraction ; Myocytes, Cardiac - physiology ; Phosphorylation ; Rabbits ; Receptors, Adrenergic, beta - physiology ; Ryanodine Receptor Calcium Release Channel ; Sarcoplasmic Reticulum - metabolism ; Signal Transduction - physiology ; Sinoatrial Node - cytology ; Sinoatrial Node - physiology ; Sodium-Calcium Exchanger - physiology ; Vertebrates: cardiovascular system</subject><ispartof>Circulation research, 2006-03, Vol.98 (4), p.505-514</ispartof><rights>2006 American Heart Association, Inc.</rights><rights>2006 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3735-67aa00687ea9f77f049cfb98854f231787f94c48ead75cc7d96eb52d376dfcce3</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=17577650$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/16424365$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Vinogradova, Tatiana M</creatorcontrib><creatorcontrib>Lyashkov, Alexey E</creatorcontrib><creatorcontrib>Zhu, Weizhong</creatorcontrib><creatorcontrib>Ruknudin, Abdul M</creatorcontrib><creatorcontrib>Sirenko, Syevda</creatorcontrib><creatorcontrib>Yang, Dongmei</creatorcontrib><creatorcontrib>Deo, Shekhar</creatorcontrib><creatorcontrib>Barlow, Matthew</creatorcontrib><creatorcontrib>Johnson, Shavsha</creatorcontrib><creatorcontrib>Caffrey, James L</creatorcontrib><creatorcontrib>Zhou, Ying-Ying</creatorcontrib><creatorcontrib>Xiao, Rui-Ping</creatorcontrib><creatorcontrib>Cheng, Heping</creatorcontrib><creatorcontrib>Stern, Michael D</creatorcontrib><creatorcontrib>Maltsev, Victor A</creatorcontrib><creatorcontrib>Lakatta, Edward G</creatorcontrib><title>High Basal Protein Kinase A–Dependent Phosphorylation Drives Rhythmic Internal Ca2+ Store Oscillations and Spontaneous Beating of Cardiac Pacemaker Cells</title><title>Circulation research</title><addtitle>Circ Res</addtitle><description>Local, rhythmic, subsarcolemmal Ca releases (LCRs) from the sarcoplasmic reticulum (SR) during diastolic depolarization in sinoatrial nodal cells (SANC) occur even in the basal state and activate an inward Na-Ca exchanger current that affects spontaneous beating. Why SANC can generate spontaneous LCRs under basal conditions, whereas ventricular cells cannot, has not previously been explained. Here we show that a high basal cAMP level of isolated rabbit SANC and its attendant increase in protein kinase A (PKA)-dependent phosphorylation are obligatory for the occurrence of spontaneous, basal LCRs and for spontaneous beating. Gradations in basal PKA activity, indexed by gradations in phospholamban phosphorylation effected by a specific PKA inhibitory peptide were highly correlated with concomitant gradations in LCR spatiotemporal synchronization and phase, as well as beating rate. Higher levels of basal PKA inhibition abolish LCRs and spontaneous beating ceases. Stimulation of β-adrenergic receptors extends the range of PKA-dependent control of LCRs and beating rate beyond that in the basal state. The link between SR Ca cycling and beating rate is also present in vivo, as the regulation of beating rate by local β-adrenergic receptor stimulation of the sinoatrial node in intact dogs is markedly blunted when SR Ca cycling is disrupted by ryanodine. Thus, PKA-dependent phosphorylation of proteins that regulate cell Ca balance and spontaneous SR Ca cycling, ie, phospholamban and L-type Ca channels (and likely others not measured in this study), controls the phase and size of LCRs and the resultant Na-Ca exchanger current and is crucial for both basal and reserve cardiac pacemaker function.</description><subject>Action Potentials</subject><subject>Animals</subject><subject>Biological and medical sciences</subject><subject>Calcium - metabolism</subject><subject>Calcium Signaling</subject><subject>Cyclic AMP - physiology</subject><subject>Cyclic AMP-Dependent Protein Kinases - physiology</subject><subject>Diastole - physiology</subject><subject>Fundamental and applied biological sciences. Psychology</subject><subject>Myocardial Contraction</subject><subject>Myocytes, Cardiac - physiology</subject><subject>Phosphorylation</subject><subject>Rabbits</subject><subject>Receptors, Adrenergic, beta - physiology</subject><subject>Ryanodine Receptor Calcium Release Channel</subject><subject>Sarcoplasmic Reticulum - metabolism</subject><subject>Signal Transduction - physiology</subject><subject>Sinoatrial Node - cytology</subject><subject>Sinoatrial Node - physiology</subject><subject>Sodium-Calcium Exchanger - physiology</subject><subject>Vertebrates: cardiovascular system</subject><issn>0009-7330</issn><issn>1524-4571</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2006</creationdate><recordtype>article</recordtype><recordid>eNpFkc1u1DAQxy0EosvCKyALCS4owY6_kmO7LbSiUlddOEdeZ9KYOnZqZ6n2xjtw5O14Eox2EXOZ0cxvRjP_QegNJSWlkn4gtLy92JQkW0W4UKJsOOGk7OgTtKCi4kVO0qdokYGmUIyRE_QipW-EUM6q5jk6oZJXnEmxQL8u7d2Az3TSDq9jmMF6_Nl6nQCf_v7x8xwm8B34Ga-HkKYhxL3Tsw0en0f7HRK-HfbzMFqDr_wM0ecpK129x5s5RMA3yVh34BPWvsObKfhZewi7hM8gF_wdDn1uiZ3VBq-1gVHfQ8QrcC69RM967RK8Ovol-vrx4svqsri--XS1Or0uDFNMFFJpTYisFeimV6onvDH9tqlrwfuKUVWrvuGG16A7JYxRXSNhK6qOKdn1xgBboneHuVMMDztIczvaZPIGh01bqRSVTdZuiV4fwd12hK6doh113Lf_5MzA2yOgk9Guj9obm_5zSiglBckcP3CPwWXZ0r3bPUJsB9BuHtq_j2WEVkWVz8oRI0XOUMH-AA_rmNM</recordid><startdate>20060303</startdate><enddate>20060303</enddate><creator>Vinogradova, Tatiana M</creator><creator>Lyashkov, Alexey E</creator><creator>Zhu, Weizhong</creator><creator>Ruknudin, Abdul M</creator><creator>Sirenko, Syevda</creator><creator>Yang, Dongmei</creator><creator>Deo, Shekhar</creator><creator>Barlow, Matthew</creator><creator>Johnson, Shavsha</creator><creator>Caffrey, James L</creator><creator>Zhou, Ying-Ying</creator><creator>Xiao, Rui-Ping</creator><creator>Cheng, Heping</creator><creator>Stern, Michael D</creator><creator>Maltsev, Victor A</creator><creator>Lakatta, Edward G</creator><general>American Heart Association, Inc</general><general>Lippincott</general><scope>IQODW</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>7X8</scope></search><sort><creationdate>20060303</creationdate><title>High Basal Protein Kinase A–Dependent Phosphorylation Drives Rhythmic Internal Ca2+ Store Oscillations and Spontaneous Beating of Cardiac Pacemaker Cells</title><author>Vinogradova, Tatiana M ; Lyashkov, Alexey E ; Zhu, Weizhong ; Ruknudin, Abdul M ; Sirenko, Syevda ; Yang, Dongmei ; Deo, Shekhar ; Barlow, Matthew ; Johnson, Shavsha ; Caffrey, James L ; Zhou, Ying-Ying ; Xiao, Rui-Ping ; Cheng, Heping ; Stern, Michael D ; Maltsev, Victor A ; Lakatta, Edward G</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3735-67aa00687ea9f77f049cfb98854f231787f94c48ead75cc7d96eb52d376dfcce3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2006</creationdate><topic>Action Potentials</topic><topic>Animals</topic><topic>Biological and medical sciences</topic><topic>Calcium - metabolism</topic><topic>Calcium Signaling</topic><topic>Cyclic AMP - physiology</topic><topic>Cyclic AMP-Dependent Protein Kinases - physiology</topic><topic>Diastole - physiology</topic><topic>Fundamental and applied biological sciences. Psychology</topic><topic>Myocardial Contraction</topic><topic>Myocytes, Cardiac - physiology</topic><topic>Phosphorylation</topic><topic>Rabbits</topic><topic>Receptors, Adrenergic, beta - physiology</topic><topic>Ryanodine Receptor Calcium Release Channel</topic><topic>Sarcoplasmic Reticulum - metabolism</topic><topic>Signal Transduction - physiology</topic><topic>Sinoatrial Node - cytology</topic><topic>Sinoatrial Node - physiology</topic><topic>Sodium-Calcium Exchanger - physiology</topic><topic>Vertebrates: cardiovascular system</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Vinogradova, Tatiana M</creatorcontrib><creatorcontrib>Lyashkov, Alexey E</creatorcontrib><creatorcontrib>Zhu, Weizhong</creatorcontrib><creatorcontrib>Ruknudin, Abdul M</creatorcontrib><creatorcontrib>Sirenko, Syevda</creatorcontrib><creatorcontrib>Yang, Dongmei</creatorcontrib><creatorcontrib>Deo, Shekhar</creatorcontrib><creatorcontrib>Barlow, Matthew</creatorcontrib><creatorcontrib>Johnson, Shavsha</creatorcontrib><creatorcontrib>Caffrey, James L</creatorcontrib><creatorcontrib>Zhou, Ying-Ying</creatorcontrib><creatorcontrib>Xiao, Rui-Ping</creatorcontrib><creatorcontrib>Cheng, Heping</creatorcontrib><creatorcontrib>Stern, Michael D</creatorcontrib><creatorcontrib>Maltsev, Victor A</creatorcontrib><creatorcontrib>Lakatta, Edward G</creatorcontrib><collection>Pascal-Francis</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>MEDLINE - Academic</collection><jtitle>Circulation research</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Vinogradova, Tatiana M</au><au>Lyashkov, Alexey E</au><au>Zhu, Weizhong</au><au>Ruknudin, Abdul M</au><au>Sirenko, Syevda</au><au>Yang, Dongmei</au><au>Deo, Shekhar</au><au>Barlow, Matthew</au><au>Johnson, Shavsha</au><au>Caffrey, James L</au><au>Zhou, Ying-Ying</au><au>Xiao, Rui-Ping</au><au>Cheng, Heping</au><au>Stern, Michael D</au><au>Maltsev, Victor A</au><au>Lakatta, Edward G</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>High Basal Protein Kinase A–Dependent Phosphorylation Drives Rhythmic Internal Ca2+ Store Oscillations and Spontaneous Beating of Cardiac Pacemaker Cells</atitle><jtitle>Circulation research</jtitle><addtitle>Circ Res</addtitle><date>2006-03-03</date><risdate>2006</risdate><volume>98</volume><issue>4</issue><spage>505</spage><epage>514</epage><pages>505-514</pages><issn>0009-7330</issn><eissn>1524-4571</eissn><coden>CIRUAL</coden><abstract>Local, rhythmic, subsarcolemmal Ca releases (LCRs) from the sarcoplasmic reticulum (SR) during diastolic depolarization in sinoatrial nodal cells (SANC) occur even in the basal state and activate an inward Na-Ca exchanger current that affects spontaneous beating. Why SANC can generate spontaneous LCRs under basal conditions, whereas ventricular cells cannot, has not previously been explained. Here we show that a high basal cAMP level of isolated rabbit SANC and its attendant increase in protein kinase A (PKA)-dependent phosphorylation are obligatory for the occurrence of spontaneous, basal LCRs and for spontaneous beating. Gradations in basal PKA activity, indexed by gradations in phospholamban phosphorylation effected by a specific PKA inhibitory peptide were highly correlated with concomitant gradations in LCR spatiotemporal synchronization and phase, as well as beating rate. Higher levels of basal PKA inhibition abolish LCRs and spontaneous beating ceases. Stimulation of β-adrenergic receptors extends the range of PKA-dependent control of LCRs and beating rate beyond that in the basal state. The link between SR Ca cycling and beating rate is also present in vivo, as the regulation of beating rate by local β-adrenergic receptor stimulation of the sinoatrial node in intact dogs is markedly blunted when SR Ca cycling is disrupted by ryanodine. Thus, PKA-dependent phosphorylation of proteins that regulate cell Ca balance and spontaneous SR Ca cycling, ie, phospholamban and L-type Ca channels (and likely others not measured in this study), controls the phase and size of LCRs and the resultant Na-Ca exchanger current and is crucial for both basal and reserve cardiac pacemaker function.</abstract><cop>Hagerstown, MD</cop><pub>American Heart Association, Inc</pub><pmid>16424365</pmid><doi>10.1161/01.RES.0000204575.94040.d1</doi><tpages>10</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0009-7330 |
ispartof | Circulation research, 2006-03, Vol.98 (4), p.505-514 |
issn | 0009-7330 1524-4571 |
language | eng |
recordid | cdi_proquest_miscellaneous_67716914 |
source | Freely Accessible Science Journals - check A-Z of ejournals |
subjects | Action Potentials Animals Biological and medical sciences Calcium - metabolism Calcium Signaling Cyclic AMP - physiology Cyclic AMP-Dependent Protein Kinases - physiology Diastole - physiology Fundamental and applied biological sciences. Psychology Myocardial Contraction Myocytes, Cardiac - physiology Phosphorylation Rabbits Receptors, Adrenergic, beta - physiology Ryanodine Receptor Calcium Release Channel Sarcoplasmic Reticulum - metabolism Signal Transduction - physiology Sinoatrial Node - cytology Sinoatrial Node - physiology Sodium-Calcium Exchanger - physiology Vertebrates: cardiovascular system |
title | High Basal Protein Kinase A–Dependent Phosphorylation Drives Rhythmic Internal Ca2+ Store Oscillations and Spontaneous Beating of Cardiac Pacemaker Cells |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-07T23%3A14%3A25IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=High%20Basal%20Protein%20Kinase%20A%E2%80%93Dependent%20Phosphorylation%20Drives%20Rhythmic%20Internal%20Ca2+%20Store%20Oscillations%20and%20Spontaneous%20Beating%20of%20Cardiac%20Pacemaker%20Cells&rft.jtitle=Circulation%20research&rft.au=Vinogradova,%20Tatiana%20M&rft.date=2006-03-03&rft.volume=98&rft.issue=4&rft.spage=505&rft.epage=514&rft.pages=505-514&rft.issn=0009-7330&rft.eissn=1524-4571&rft.coden=CIRUAL&rft_id=info:doi/10.1161/01.RES.0000204575.94040.d1&rft_dat=%3Cproquest_pubme%3E67716914%3C/proquest_pubme%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c3735-67aa00687ea9f77f049cfb98854f231787f94c48ead75cc7d96eb52d376dfcce3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=67716914&rft_id=info:pmid/16424365&rfr_iscdi=true |