Loading…
Dynamic network reconstruction from gene expression data applied to immune response during bacterial infection
Motivation: The immune response to bacterial infection represents a complex network of dynamic gene and protein interactions. We present an optimized reverse engineering strategy aimed at a reconstruction of this kind of interaction networks. The proposed approach is based on both microarray data an...
Saved in:
Published in: | Bioinformatics 2005-04, Vol.21 (8), p.1626-1634 |
---|---|
Main Authors: | , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c546t-ae5788be43854d489916e96647ed7416fe5bb390fa22fd42340126e7699fd27c3 |
---|---|
cites | cdi_FETCH-LOGICAL-c546t-ae5788be43854d489916e96647ed7416fe5bb390fa22fd42340126e7699fd27c3 |
container_end_page | 1634 |
container_issue | 8 |
container_start_page | 1626 |
container_title | Bioinformatics |
container_volume | 21 |
creator | Guthke, Reinhard Möller, Ulrich Hoffmann, Martin Thies, Frank Töpfer, Susanne |
description | Motivation: The immune response to bacterial infection represents a complex network of dynamic gene and protein interactions. We present an optimized reverse engineering strategy aimed at a reconstruction of this kind of interaction networks. The proposed approach is based on both microarray data and available biological knowledge. Results: The main kinetics of the immune response were identified by fuzzy clustering of gene expression profiles (time series). The number of clusters was optimized using various evaluation criteria. For each cluster a representative gene with a high fuzzy-membership was chosen in accordance with available physiological knowledge. Then hypothetical network structures were identified by seeking systems of ordinary differential equations, whose simulated kinetics could fit the gene expression profiles of the cluster-representative genes. For the construction of hypothetical network structures singular value decomposition (SVD) based methods and a newly introduced heuristic Network Generation Method here were compared. It turned out that the proposed novel method could find sparser networks and gave better fits to the experimental data. Contact: Reinhard.Guthke@hki-jena.de |
doi_str_mv | 10.1093/bioinformatics/bti226 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_67722811</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>824988741</sourcerecordid><originalsourceid>FETCH-LOGICAL-c546t-ae5788be43854d489916e96647ed7416fe5bb390fa22fd42340126e7699fd27c3</originalsourceid><addsrcrecordid>eNqFkUtv1TAQhSMEouXCTwBZSHQX6rfjJWppL6KIDS-xsRxnUrlN7GA7ov33uNwrKtiwmtHMd45mdJrmOcGvCdbsuPfRhzGm2Rbv8nFfPKXyQXNIuMQtxUI_rD2TquUdZgfNk5yvMBaEc_64OSBCEsZ0d9iE09tgZ-9QgPIzpmuUwMWQS1pd8TGgMcUZXUIABDdLgpzvhoMtFtllmTwMqETk53mtRF0vVQtoWJMPl6i3rkDydkL1Uvjt97R5NNopw7N93TSfz95-Otm2Fx_P3528uWid4LK0FoTquh446wQfeKc1kaCl5AoGxYkcQfQ903i0lI4Dp4xjQiUoqfU4UOXYpjna-S4p_lghFzP77GCabIC4ZiOVorQj5L8gUYJ1kukKvvwHvIprCvUJQ3QnuaaKVkjsIJdizglGsyQ_23RrCDZ3sZm_YzO72Kruxd587WcY7lX7nCrwag_Y7Ow0Jhucz_ecVESoeuqmaXeczwVu_uxtuq4vMyXM9tt30_EP2y9f35-ac_YLFhm2xQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>198649272</pqid></control><display><type>article</type><title>Dynamic network reconstruction from gene expression data applied to immune response during bacterial infection</title><source>Oxford University Press Open Access</source><creator>Guthke, Reinhard ; Möller, Ulrich ; Hoffmann, Martin ; Thies, Frank ; Töpfer, Susanne</creator><creatorcontrib>Guthke, Reinhard ; Möller, Ulrich ; Hoffmann, Martin ; Thies, Frank ; Töpfer, Susanne</creatorcontrib><description>Motivation: The immune response to bacterial infection represents a complex network of dynamic gene and protein interactions. We present an optimized reverse engineering strategy aimed at a reconstruction of this kind of interaction networks. The proposed approach is based on both microarray data and available biological knowledge. Results: The main kinetics of the immune response were identified by fuzzy clustering of gene expression profiles (time series). The number of clusters was optimized using various evaluation criteria. For each cluster a representative gene with a high fuzzy-membership was chosen in accordance with available physiological knowledge. Then hypothetical network structures were identified by seeking systems of ordinary differential equations, whose simulated kinetics could fit the gene expression profiles of the cluster-representative genes. For the construction of hypothetical network structures singular value decomposition (SVD) based methods and a newly introduced heuristic Network Generation Method here were compared. It turned out that the proposed novel method could find sparser networks and gave better fits to the experimental data. Contact: Reinhard.Guthke@hki-jena.de</description><identifier>ISSN: 1367-4803</identifier><identifier>EISSN: 1460-2059</identifier><identifier>EISSN: 1367-4811</identifier><identifier>DOI: 10.1093/bioinformatics/bti226</identifier><identifier>PMID: 15613398</identifier><identifier>CODEN: BOINFP</identifier><language>eng</language><publisher>Oxford: Oxford University Press</publisher><subject>Algorithms ; Biological and medical sciences ; Computer Simulation ; Cytokines - immunology ; Escherichia coli Infections - immunology ; Fundamental and applied biological sciences. Psychology ; Gene Expression Profiling - methods ; Gene Expression Regulation - immunology ; General aspects ; HLA-D Antigens - immunology ; Humans ; Mathematics in biology. Statistical analysis. Models. Metrology. Data processing in biology (general aspects) ; Models, Immunological ; Oligonucleotide Array Sequence Analysis - methods ; Signal Transduction - immunology</subject><ispartof>Bioinformatics, 2005-04, Vol.21 (8), p.1626-1634</ispartof><rights>2005 INIST-CNRS</rights><rights>Copyright Oxford University Press(England) Apr 15, 2005</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c546t-ae5788be43854d489916e96647ed7416fe5bb390fa22fd42340126e7699fd27c3</citedby><cites>FETCH-LOGICAL-c546t-ae5788be43854d489916e96647ed7416fe5bb390fa22fd42340126e7699fd27c3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=16715775$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/15613398$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Guthke, Reinhard</creatorcontrib><creatorcontrib>Möller, Ulrich</creatorcontrib><creatorcontrib>Hoffmann, Martin</creatorcontrib><creatorcontrib>Thies, Frank</creatorcontrib><creatorcontrib>Töpfer, Susanne</creatorcontrib><title>Dynamic network reconstruction from gene expression data applied to immune response during bacterial infection</title><title>Bioinformatics</title><addtitle>Bioinformatics</addtitle><description>Motivation: The immune response to bacterial infection represents a complex network of dynamic gene and protein interactions. We present an optimized reverse engineering strategy aimed at a reconstruction of this kind of interaction networks. The proposed approach is based on both microarray data and available biological knowledge. Results: The main kinetics of the immune response were identified by fuzzy clustering of gene expression profiles (time series). The number of clusters was optimized using various evaluation criteria. For each cluster a representative gene with a high fuzzy-membership was chosen in accordance with available physiological knowledge. Then hypothetical network structures were identified by seeking systems of ordinary differential equations, whose simulated kinetics could fit the gene expression profiles of the cluster-representative genes. For the construction of hypothetical network structures singular value decomposition (SVD) based methods and a newly introduced heuristic Network Generation Method here were compared. It turned out that the proposed novel method could find sparser networks and gave better fits to the experimental data. Contact: Reinhard.Guthke@hki-jena.de</description><subject>Algorithms</subject><subject>Biological and medical sciences</subject><subject>Computer Simulation</subject><subject>Cytokines - immunology</subject><subject>Escherichia coli Infections - immunology</subject><subject>Fundamental and applied biological sciences. Psychology</subject><subject>Gene Expression Profiling - methods</subject><subject>Gene Expression Regulation - immunology</subject><subject>General aspects</subject><subject>HLA-D Antigens - immunology</subject><subject>Humans</subject><subject>Mathematics in biology. Statistical analysis. Models. Metrology. Data processing in biology (general aspects)</subject><subject>Models, Immunological</subject><subject>Oligonucleotide Array Sequence Analysis - methods</subject><subject>Signal Transduction - immunology</subject><issn>1367-4803</issn><issn>1460-2059</issn><issn>1367-4811</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2005</creationdate><recordtype>article</recordtype><recordid>eNqFkUtv1TAQhSMEouXCTwBZSHQX6rfjJWppL6KIDS-xsRxnUrlN7GA7ov33uNwrKtiwmtHMd45mdJrmOcGvCdbsuPfRhzGm2Rbv8nFfPKXyQXNIuMQtxUI_rD2TquUdZgfNk5yvMBaEc_64OSBCEsZ0d9iE09tgZ-9QgPIzpmuUwMWQS1pd8TGgMcUZXUIABDdLgpzvhoMtFtllmTwMqETk53mtRF0vVQtoWJMPl6i3rkDydkL1Uvjt97R5NNopw7N93TSfz95-Otm2Fx_P3528uWid4LK0FoTquh446wQfeKc1kaCl5AoGxYkcQfQ903i0lI4Dp4xjQiUoqfU4UOXYpjna-S4p_lghFzP77GCabIC4ZiOVorQj5L8gUYJ1kukKvvwHvIprCvUJQ3QnuaaKVkjsIJdizglGsyQ_23RrCDZ3sZm_YzO72Kruxd587WcY7lX7nCrwag_Y7Ow0Jhucz_ecVESoeuqmaXeczwVu_uxtuq4vMyXM9tt30_EP2y9f35-ac_YLFhm2xQ</recordid><startdate>20050415</startdate><enddate>20050415</enddate><creator>Guthke, Reinhard</creator><creator>Möller, Ulrich</creator><creator>Hoffmann, Martin</creator><creator>Thies, Frank</creator><creator>Töpfer, Susanne</creator><general>Oxford University Press</general><general>Oxford Publishing Limited (England)</general><scope>BSCLL</scope><scope>IQODW</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QF</scope><scope>7QO</scope><scope>7QQ</scope><scope>7SC</scope><scope>7SE</scope><scope>7SP</scope><scope>7SR</scope><scope>7TA</scope><scope>7TB</scope><scope>7TM</scope><scope>7TO</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>F28</scope><scope>FR3</scope><scope>H8D</scope><scope>H8G</scope><scope>H94</scope><scope>JG9</scope><scope>JQ2</scope><scope>K9.</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>P64</scope><scope>7X8</scope></search><sort><creationdate>20050415</creationdate><title>Dynamic network reconstruction from gene expression data applied to immune response during bacterial infection</title><author>Guthke, Reinhard ; Möller, Ulrich ; Hoffmann, Martin ; Thies, Frank ; Töpfer, Susanne</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c546t-ae5788be43854d489916e96647ed7416fe5bb390fa22fd42340126e7699fd27c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2005</creationdate><topic>Algorithms</topic><topic>Biological and medical sciences</topic><topic>Computer Simulation</topic><topic>Cytokines - immunology</topic><topic>Escherichia coli Infections - immunology</topic><topic>Fundamental and applied biological sciences. Psychology</topic><topic>Gene Expression Profiling - methods</topic><topic>Gene Expression Regulation - immunology</topic><topic>General aspects</topic><topic>HLA-D Antigens - immunology</topic><topic>Humans</topic><topic>Mathematics in biology. Statistical analysis. Models. Metrology. Data processing in biology (general aspects)</topic><topic>Models, Immunological</topic><topic>Oligonucleotide Array Sequence Analysis - methods</topic><topic>Signal Transduction - immunology</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Guthke, Reinhard</creatorcontrib><creatorcontrib>Möller, Ulrich</creatorcontrib><creatorcontrib>Hoffmann, Martin</creatorcontrib><creatorcontrib>Thies, Frank</creatorcontrib><creatorcontrib>Töpfer, Susanne</creatorcontrib><collection>Istex</collection><collection>Pascal-Francis</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Aluminium Industry Abstracts</collection><collection>Biotechnology Research Abstracts</collection><collection>Ceramic Abstracts</collection><collection>Computer and Information Systems Abstracts</collection><collection>Corrosion Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Materials Business File</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ANTE: Abstracts in New Technology & Engineering</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Copper Technical Reference Library</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>Bioinformatics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Guthke, Reinhard</au><au>Möller, Ulrich</au><au>Hoffmann, Martin</au><au>Thies, Frank</au><au>Töpfer, Susanne</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Dynamic network reconstruction from gene expression data applied to immune response during bacterial infection</atitle><jtitle>Bioinformatics</jtitle><addtitle>Bioinformatics</addtitle><date>2005-04-15</date><risdate>2005</risdate><volume>21</volume><issue>8</issue><spage>1626</spage><epage>1634</epage><pages>1626-1634</pages><issn>1367-4803</issn><eissn>1460-2059</eissn><eissn>1367-4811</eissn><coden>BOINFP</coden><abstract>Motivation: The immune response to bacterial infection represents a complex network of dynamic gene and protein interactions. We present an optimized reverse engineering strategy aimed at a reconstruction of this kind of interaction networks. The proposed approach is based on both microarray data and available biological knowledge. Results: The main kinetics of the immune response were identified by fuzzy clustering of gene expression profiles (time series). The number of clusters was optimized using various evaluation criteria. For each cluster a representative gene with a high fuzzy-membership was chosen in accordance with available physiological knowledge. Then hypothetical network structures were identified by seeking systems of ordinary differential equations, whose simulated kinetics could fit the gene expression profiles of the cluster-representative genes. For the construction of hypothetical network structures singular value decomposition (SVD) based methods and a newly introduced heuristic Network Generation Method here were compared. It turned out that the proposed novel method could find sparser networks and gave better fits to the experimental data. Contact: Reinhard.Guthke@hki-jena.de</abstract><cop>Oxford</cop><pub>Oxford University Press</pub><pmid>15613398</pmid><doi>10.1093/bioinformatics/bti226</doi><tpages>9</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1367-4803 |
ispartof | Bioinformatics, 2005-04, Vol.21 (8), p.1626-1634 |
issn | 1367-4803 1460-2059 1367-4811 |
language | eng |
recordid | cdi_proquest_miscellaneous_67722811 |
source | Oxford University Press Open Access |
subjects | Algorithms Biological and medical sciences Computer Simulation Cytokines - immunology Escherichia coli Infections - immunology Fundamental and applied biological sciences. Psychology Gene Expression Profiling - methods Gene Expression Regulation - immunology General aspects HLA-D Antigens - immunology Humans Mathematics in biology. Statistical analysis. Models. Metrology. Data processing in biology (general aspects) Models, Immunological Oligonucleotide Array Sequence Analysis - methods Signal Transduction - immunology |
title | Dynamic network reconstruction from gene expression data applied to immune response during bacterial infection |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-06T18%3A06%3A16IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Dynamic%20network%20reconstruction%20from%20gene%20expression%20data%20applied%20to%20immune%20response%20during%20bacterial%20infection&rft.jtitle=Bioinformatics&rft.au=Guthke,%20Reinhard&rft.date=2005-04-15&rft.volume=21&rft.issue=8&rft.spage=1626&rft.epage=1634&rft.pages=1626-1634&rft.issn=1367-4803&rft.eissn=1460-2059&rft.coden=BOINFP&rft_id=info:doi/10.1093/bioinformatics/bti226&rft_dat=%3Cproquest_cross%3E824988741%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c546t-ae5788be43854d489916e96647ed7416fe5bb390fa22fd42340126e7699fd27c3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=198649272&rft_id=info:pmid/15613398&rfr_iscdi=true |