Loading…

Dynamic network reconstruction from gene expression data applied to immune response during bacterial infection

Motivation: The immune response to bacterial infection represents a complex network of dynamic gene and protein interactions. We present an optimized reverse engineering strategy aimed at a reconstruction of this kind of interaction networks. The proposed approach is based on both microarray data an...

Full description

Saved in:
Bibliographic Details
Published in:Bioinformatics 2005-04, Vol.21 (8), p.1626-1634
Main Authors: Guthke, Reinhard, Möller, Ulrich, Hoffmann, Martin, Thies, Frank, Töpfer, Susanne
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c546t-ae5788be43854d489916e96647ed7416fe5bb390fa22fd42340126e7699fd27c3
cites cdi_FETCH-LOGICAL-c546t-ae5788be43854d489916e96647ed7416fe5bb390fa22fd42340126e7699fd27c3
container_end_page 1634
container_issue 8
container_start_page 1626
container_title Bioinformatics
container_volume 21
creator Guthke, Reinhard
Möller, Ulrich
Hoffmann, Martin
Thies, Frank
Töpfer, Susanne
description Motivation: The immune response to bacterial infection represents a complex network of dynamic gene and protein interactions. We present an optimized reverse engineering strategy aimed at a reconstruction of this kind of interaction networks. The proposed approach is based on both microarray data and available biological knowledge. Results: The main kinetics of the immune response were identified by fuzzy clustering of gene expression profiles (time series). The number of clusters was optimized using various evaluation criteria. For each cluster a representative gene with a high fuzzy-membership was chosen in accordance with available physiological knowledge. Then hypothetical network structures were identified by seeking systems of ordinary differential equations, whose simulated kinetics could fit the gene expression profiles of the cluster-representative genes. For the construction of hypothetical network structures singular value decomposition (SVD) based methods and a newly introduced heuristic Network Generation Method here were compared. It turned out that the proposed novel method could find sparser networks and gave better fits to the experimental data. Contact: Reinhard.Guthke@hki-jena.de
doi_str_mv 10.1093/bioinformatics/bti226
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_67722811</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>824988741</sourcerecordid><originalsourceid>FETCH-LOGICAL-c546t-ae5788be43854d489916e96647ed7416fe5bb390fa22fd42340126e7699fd27c3</originalsourceid><addsrcrecordid>eNqFkUtv1TAQhSMEouXCTwBZSHQX6rfjJWppL6KIDS-xsRxnUrlN7GA7ov33uNwrKtiwmtHMd45mdJrmOcGvCdbsuPfRhzGm2Rbv8nFfPKXyQXNIuMQtxUI_rD2TquUdZgfNk5yvMBaEc_64OSBCEsZ0d9iE09tgZ-9QgPIzpmuUwMWQS1pd8TGgMcUZXUIABDdLgpzvhoMtFtllmTwMqETk53mtRF0vVQtoWJMPl6i3rkDydkL1Uvjt97R5NNopw7N93TSfz95-Otm2Fx_P3528uWid4LK0FoTquh446wQfeKc1kaCl5AoGxYkcQfQ903i0lI4Dp4xjQiUoqfU4UOXYpjna-S4p_lghFzP77GCabIC4ZiOVorQj5L8gUYJ1kukKvvwHvIprCvUJQ3QnuaaKVkjsIJdizglGsyQ_23RrCDZ3sZm_YzO72Kruxd587WcY7lX7nCrwag_Y7Ow0Jhucz_ecVESoeuqmaXeczwVu_uxtuq4vMyXM9tt30_EP2y9f35-ac_YLFhm2xQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>198649272</pqid></control><display><type>article</type><title>Dynamic network reconstruction from gene expression data applied to immune response during bacterial infection</title><source>Oxford University Press Open Access</source><creator>Guthke, Reinhard ; Möller, Ulrich ; Hoffmann, Martin ; Thies, Frank ; Töpfer, Susanne</creator><creatorcontrib>Guthke, Reinhard ; Möller, Ulrich ; Hoffmann, Martin ; Thies, Frank ; Töpfer, Susanne</creatorcontrib><description>Motivation: The immune response to bacterial infection represents a complex network of dynamic gene and protein interactions. We present an optimized reverse engineering strategy aimed at a reconstruction of this kind of interaction networks. The proposed approach is based on both microarray data and available biological knowledge. Results: The main kinetics of the immune response were identified by fuzzy clustering of gene expression profiles (time series). The number of clusters was optimized using various evaluation criteria. For each cluster a representative gene with a high fuzzy-membership was chosen in accordance with available physiological knowledge. Then hypothetical network structures were identified by seeking systems of ordinary differential equations, whose simulated kinetics could fit the gene expression profiles of the cluster-representative genes. For the construction of hypothetical network structures singular value decomposition (SVD) based methods and a newly introduced heuristic Network Generation Method here were compared. It turned out that the proposed novel method could find sparser networks and gave better fits to the experimental data. Contact: Reinhard.Guthke@hki-jena.de</description><identifier>ISSN: 1367-4803</identifier><identifier>EISSN: 1460-2059</identifier><identifier>EISSN: 1367-4811</identifier><identifier>DOI: 10.1093/bioinformatics/bti226</identifier><identifier>PMID: 15613398</identifier><identifier>CODEN: BOINFP</identifier><language>eng</language><publisher>Oxford: Oxford University Press</publisher><subject>Algorithms ; Biological and medical sciences ; Computer Simulation ; Cytokines - immunology ; Escherichia coli Infections - immunology ; Fundamental and applied biological sciences. Psychology ; Gene Expression Profiling - methods ; Gene Expression Regulation - immunology ; General aspects ; HLA-D Antigens - immunology ; Humans ; Mathematics in biology. Statistical analysis. Models. Metrology. Data processing in biology (general aspects) ; Models, Immunological ; Oligonucleotide Array Sequence Analysis - methods ; Signal Transduction - immunology</subject><ispartof>Bioinformatics, 2005-04, Vol.21 (8), p.1626-1634</ispartof><rights>2005 INIST-CNRS</rights><rights>Copyright Oxford University Press(England) Apr 15, 2005</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c546t-ae5788be43854d489916e96647ed7416fe5bb390fa22fd42340126e7699fd27c3</citedby><cites>FETCH-LOGICAL-c546t-ae5788be43854d489916e96647ed7416fe5bb390fa22fd42340126e7699fd27c3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=16715775$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/15613398$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Guthke, Reinhard</creatorcontrib><creatorcontrib>Möller, Ulrich</creatorcontrib><creatorcontrib>Hoffmann, Martin</creatorcontrib><creatorcontrib>Thies, Frank</creatorcontrib><creatorcontrib>Töpfer, Susanne</creatorcontrib><title>Dynamic network reconstruction from gene expression data applied to immune response during bacterial infection</title><title>Bioinformatics</title><addtitle>Bioinformatics</addtitle><description>Motivation: The immune response to bacterial infection represents a complex network of dynamic gene and protein interactions. We present an optimized reverse engineering strategy aimed at a reconstruction of this kind of interaction networks. The proposed approach is based on both microarray data and available biological knowledge. Results: The main kinetics of the immune response were identified by fuzzy clustering of gene expression profiles (time series). The number of clusters was optimized using various evaluation criteria. For each cluster a representative gene with a high fuzzy-membership was chosen in accordance with available physiological knowledge. Then hypothetical network structures were identified by seeking systems of ordinary differential equations, whose simulated kinetics could fit the gene expression profiles of the cluster-representative genes. For the construction of hypothetical network structures singular value decomposition (SVD) based methods and a newly introduced heuristic Network Generation Method here were compared. It turned out that the proposed novel method could find sparser networks and gave better fits to the experimental data. Contact: Reinhard.Guthke@hki-jena.de</description><subject>Algorithms</subject><subject>Biological and medical sciences</subject><subject>Computer Simulation</subject><subject>Cytokines - immunology</subject><subject>Escherichia coli Infections - immunology</subject><subject>Fundamental and applied biological sciences. Psychology</subject><subject>Gene Expression Profiling - methods</subject><subject>Gene Expression Regulation - immunology</subject><subject>General aspects</subject><subject>HLA-D Antigens - immunology</subject><subject>Humans</subject><subject>Mathematics in biology. Statistical analysis. Models. Metrology. Data processing in biology (general aspects)</subject><subject>Models, Immunological</subject><subject>Oligonucleotide Array Sequence Analysis - methods</subject><subject>Signal Transduction - immunology</subject><issn>1367-4803</issn><issn>1460-2059</issn><issn>1367-4811</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2005</creationdate><recordtype>article</recordtype><recordid>eNqFkUtv1TAQhSMEouXCTwBZSHQX6rfjJWppL6KIDS-xsRxnUrlN7GA7ov33uNwrKtiwmtHMd45mdJrmOcGvCdbsuPfRhzGm2Rbv8nFfPKXyQXNIuMQtxUI_rD2TquUdZgfNk5yvMBaEc_64OSBCEsZ0d9iE09tgZ-9QgPIzpmuUwMWQS1pd8TGgMcUZXUIABDdLgpzvhoMtFtllmTwMqETk53mtRF0vVQtoWJMPl6i3rkDydkL1Uvjt97R5NNopw7N93TSfz95-Otm2Fx_P3528uWid4LK0FoTquh446wQfeKc1kaCl5AoGxYkcQfQ903i0lI4Dp4xjQiUoqfU4UOXYpjna-S4p_lghFzP77GCabIC4ZiOVorQj5L8gUYJ1kukKvvwHvIprCvUJQ3QnuaaKVkjsIJdizglGsyQ_23RrCDZ3sZm_YzO72Kruxd587WcY7lX7nCrwag_Y7Ow0Jhucz_ecVESoeuqmaXeczwVu_uxtuq4vMyXM9tt30_EP2y9f35-ac_YLFhm2xQ</recordid><startdate>20050415</startdate><enddate>20050415</enddate><creator>Guthke, Reinhard</creator><creator>Möller, Ulrich</creator><creator>Hoffmann, Martin</creator><creator>Thies, Frank</creator><creator>Töpfer, Susanne</creator><general>Oxford University Press</general><general>Oxford Publishing Limited (England)</general><scope>BSCLL</scope><scope>IQODW</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QF</scope><scope>7QO</scope><scope>7QQ</scope><scope>7SC</scope><scope>7SE</scope><scope>7SP</scope><scope>7SR</scope><scope>7TA</scope><scope>7TB</scope><scope>7TM</scope><scope>7TO</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>F28</scope><scope>FR3</scope><scope>H8D</scope><scope>H8G</scope><scope>H94</scope><scope>JG9</scope><scope>JQ2</scope><scope>K9.</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>P64</scope><scope>7X8</scope></search><sort><creationdate>20050415</creationdate><title>Dynamic network reconstruction from gene expression data applied to immune response during bacterial infection</title><author>Guthke, Reinhard ; Möller, Ulrich ; Hoffmann, Martin ; Thies, Frank ; Töpfer, Susanne</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c546t-ae5788be43854d489916e96647ed7416fe5bb390fa22fd42340126e7699fd27c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2005</creationdate><topic>Algorithms</topic><topic>Biological and medical sciences</topic><topic>Computer Simulation</topic><topic>Cytokines - immunology</topic><topic>Escherichia coli Infections - immunology</topic><topic>Fundamental and applied biological sciences. Psychology</topic><topic>Gene Expression Profiling - methods</topic><topic>Gene Expression Regulation - immunology</topic><topic>General aspects</topic><topic>HLA-D Antigens - immunology</topic><topic>Humans</topic><topic>Mathematics in biology. Statistical analysis. Models. Metrology. Data processing in biology (general aspects)</topic><topic>Models, Immunological</topic><topic>Oligonucleotide Array Sequence Analysis - methods</topic><topic>Signal Transduction - immunology</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Guthke, Reinhard</creatorcontrib><creatorcontrib>Möller, Ulrich</creatorcontrib><creatorcontrib>Hoffmann, Martin</creatorcontrib><creatorcontrib>Thies, Frank</creatorcontrib><creatorcontrib>Töpfer, Susanne</creatorcontrib><collection>Istex</collection><collection>Pascal-Francis</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Aluminium Industry Abstracts</collection><collection>Biotechnology Research Abstracts</collection><collection>Ceramic Abstracts</collection><collection>Computer and Information Systems Abstracts</collection><collection>Corrosion Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Materials Business File</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Copper Technical Reference Library</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>Bioinformatics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Guthke, Reinhard</au><au>Möller, Ulrich</au><au>Hoffmann, Martin</au><au>Thies, Frank</au><au>Töpfer, Susanne</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Dynamic network reconstruction from gene expression data applied to immune response during bacterial infection</atitle><jtitle>Bioinformatics</jtitle><addtitle>Bioinformatics</addtitle><date>2005-04-15</date><risdate>2005</risdate><volume>21</volume><issue>8</issue><spage>1626</spage><epage>1634</epage><pages>1626-1634</pages><issn>1367-4803</issn><eissn>1460-2059</eissn><eissn>1367-4811</eissn><coden>BOINFP</coden><abstract>Motivation: The immune response to bacterial infection represents a complex network of dynamic gene and protein interactions. We present an optimized reverse engineering strategy aimed at a reconstruction of this kind of interaction networks. The proposed approach is based on both microarray data and available biological knowledge. Results: The main kinetics of the immune response were identified by fuzzy clustering of gene expression profiles (time series). The number of clusters was optimized using various evaluation criteria. For each cluster a representative gene with a high fuzzy-membership was chosen in accordance with available physiological knowledge. Then hypothetical network structures were identified by seeking systems of ordinary differential equations, whose simulated kinetics could fit the gene expression profiles of the cluster-representative genes. For the construction of hypothetical network structures singular value decomposition (SVD) based methods and a newly introduced heuristic Network Generation Method here were compared. It turned out that the proposed novel method could find sparser networks and gave better fits to the experimental data. Contact: Reinhard.Guthke@hki-jena.de</abstract><cop>Oxford</cop><pub>Oxford University Press</pub><pmid>15613398</pmid><doi>10.1093/bioinformatics/bti226</doi><tpages>9</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1367-4803
ispartof Bioinformatics, 2005-04, Vol.21 (8), p.1626-1634
issn 1367-4803
1460-2059
1367-4811
language eng
recordid cdi_proquest_miscellaneous_67722811
source Oxford University Press Open Access
subjects Algorithms
Biological and medical sciences
Computer Simulation
Cytokines - immunology
Escherichia coli Infections - immunology
Fundamental and applied biological sciences. Psychology
Gene Expression Profiling - methods
Gene Expression Regulation - immunology
General aspects
HLA-D Antigens - immunology
Humans
Mathematics in biology. Statistical analysis. Models. Metrology. Data processing in biology (general aspects)
Models, Immunological
Oligonucleotide Array Sequence Analysis - methods
Signal Transduction - immunology
title Dynamic network reconstruction from gene expression data applied to immune response during bacterial infection
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-06T18%3A06%3A16IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Dynamic%20network%20reconstruction%20from%20gene%20expression%20data%20applied%20to%20immune%20response%20during%20bacterial%20infection&rft.jtitle=Bioinformatics&rft.au=Guthke,%20Reinhard&rft.date=2005-04-15&rft.volume=21&rft.issue=8&rft.spage=1626&rft.epage=1634&rft.pages=1626-1634&rft.issn=1367-4803&rft.eissn=1460-2059&rft.coden=BOINFP&rft_id=info:doi/10.1093/bioinformatics/bti226&rft_dat=%3Cproquest_cross%3E824988741%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c546t-ae5788be43854d489916e96647ed7416fe5bb390fa22fd42340126e7699fd27c3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=198649272&rft_id=info:pmid/15613398&rfr_iscdi=true