Loading…

A phylogenetic and structural analysis of truncated hemoglobins

Truncated hemoglobins (trHbs) are heme proteins found in bacteria, plants, and unicellular eukaryotes. They are distantly related to vertebrate hemoglobins and are typically shorter than these by 20-40 residues. The multiple amino acid deletions, insertions, and replacements result in distinctive al...

Full description

Saved in:
Bibliographic Details
Published in:Journal of molecular evolution 2006-02, Vol.62 (2), p.196-210
Main Authors: Vuletich, David A, Lecomte, Juliette T J
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c423t-4e4d1b97d110f740501848e538cdd19f03449f6d70f89891bd866ab7163b43213
cites cdi_FETCH-LOGICAL-c423t-4e4d1b97d110f740501848e538cdd19f03449f6d70f89891bd866ab7163b43213
container_end_page 210
container_issue 2
container_start_page 196
container_title Journal of molecular evolution
container_volume 62
creator Vuletich, David A
Lecomte, Juliette T J
description Truncated hemoglobins (trHbs) are heme proteins found in bacteria, plants, and unicellular eukaryotes. They are distantly related to vertebrate hemoglobins and are typically shorter than these by 20-40 residues. The multiple amino acid deletions, insertions, and replacements result in distinctive alterations of the canonical globin fold and a wide range of chemical properties. An early phylogenetic analysis categorized trHbs into three groups, I (trHbN), II (trHbO), and III (trHbP). Here, we revisit this analysis with 111 trHbs. We find that trHbs are orthologous within each group and paralogous across the groups. Group I globins form the most disparate set and separate into two divergent subgroups. Group II is comparatively homogeneous, whereas Group III displays the highest level of overall conservation. In Group I and Group II globins, for which some ligand binding and structural data are available, an improved description of probable protein-ligand interactions is achieved. Other conservation trends are either confirmed (essential glycines in loops), refined (lining of ligand access tunnel), or newly identified (helix start signal). The Group III globins, so far uncharacterized, exhibit recognizable heme cavity residues while lacking some of the residues thought to be important to the trHb fold. An analysis of the phylogenetic trees of each group provides a plausible scenario for the emergence of trHbs, by which the Group II trHb gene was the original gene, and the Group I trHb and Group III trHb genes were obtained via duplication and transfer events.
doi_str_mv 10.1007/s00239-005-0077-4
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_67724586</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>19299757</sourcerecordid><originalsourceid>FETCH-LOGICAL-c423t-4e4d1b97d110f740501848e538cdd19f03449f6d70f89891bd866ab7163b43213</originalsourceid><addsrcrecordid>eNqFkU1LAzEQhoMotlZ_gBdZPHhbzeQ7J5HiFxS86DlkN9l2y3ZTk91D_70pLQhePMwMM_PMwMyL0DXge8BYPiSMCdUlxjyblCU7QVNglJR7d4qmuU1KohiboIuU1hiD5JqeowkIJpmWeooen4rtateFpe_90NaF7V2RhjjWwxhtl1Pb7VKbitAUudrXdvCuWPlNWHahavt0ic4a2yV_dYwz9PXy_Dl_Kxcfr-_zp0VZM0KHknnmoNLSAeBGMswxKKY8p6p2DnSDKWO6EU7iRmmloXJKCFtJELTKtwCdobvD3m0M36NPg9m0qfZdZ3sfxmSElIRxJf4FQROtJZcZvP0DrsMY873JqPxNLhQnGYIDVMeQUvSN2cZ2Y-POADZ7DcxBA5M1MHsNDMszN8fFY7Xx7nfi-HT6A8F_f-I</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>800756852</pqid></control><display><type>article</type><title>A phylogenetic and structural analysis of truncated hemoglobins</title><source>Springer Nature</source><creator>Vuletich, David A ; Lecomte, Juliette T J</creator><creatorcontrib>Vuletich, David A ; Lecomte, Juliette T J</creatorcontrib><description>Truncated hemoglobins (trHbs) are heme proteins found in bacteria, plants, and unicellular eukaryotes. They are distantly related to vertebrate hemoglobins and are typically shorter than these by 20-40 residues. The multiple amino acid deletions, insertions, and replacements result in distinctive alterations of the canonical globin fold and a wide range of chemical properties. An early phylogenetic analysis categorized trHbs into three groups, I (trHbN), II (trHbO), and III (trHbP). Here, we revisit this analysis with 111 trHbs. We find that trHbs are orthologous within each group and paralogous across the groups. Group I globins form the most disparate set and separate into two divergent subgroups. Group II is comparatively homogeneous, whereas Group III displays the highest level of overall conservation. In Group I and Group II globins, for which some ligand binding and structural data are available, an improved description of probable protein-ligand interactions is achieved. Other conservation trends are either confirmed (essential glycines in loops), refined (lining of ligand access tunnel), or newly identified (helix start signal). The Group III globins, so far uncharacterized, exhibit recognizable heme cavity residues while lacking some of the residues thought to be important to the trHb fold. An analysis of the phylogenetic trees of each group provides a plausible scenario for the emergence of trHbs, by which the Group II trHb gene was the original gene, and the Group I trHb and Group III trHb genes were obtained via duplication and transfer events.</description><identifier>ISSN: 0022-2844</identifier><identifier>EISSN: 1432-1432</identifier><identifier>DOI: 10.1007/s00239-005-0077-4</identifier><identifier>PMID: 16474979</identifier><language>eng</language><publisher>Germany: Springer Nature B.V</publisher><subject>Amino Acid Sequence ; Amino acids ; Animals ; Bacteria ; Chemical properties ; Conserved Sequence ; Evolution, Molecular ; Gene Transfer, Horizontal ; Hemoglobins - genetics ; Ligands ; Models, Genetic ; Molecular Sequence Data ; Phylogeny ; Protein Structure, Quaternary ; Sequence Homology, Amino Acid ; Structural analysis ; Truncated Hemoglobins</subject><ispartof>Journal of molecular evolution, 2006-02, Vol.62 (2), p.196-210</ispartof><rights>Springer Science+Business Media, Inc. 2006</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c423t-4e4d1b97d110f740501848e538cdd19f03449f6d70f89891bd866ab7163b43213</citedby><cites>FETCH-LOGICAL-c423t-4e4d1b97d110f740501848e538cdd19f03449f6d70f89891bd866ab7163b43213</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/16474979$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Vuletich, David A</creatorcontrib><creatorcontrib>Lecomte, Juliette T J</creatorcontrib><title>A phylogenetic and structural analysis of truncated hemoglobins</title><title>Journal of molecular evolution</title><addtitle>J Mol Evol</addtitle><description>Truncated hemoglobins (trHbs) are heme proteins found in bacteria, plants, and unicellular eukaryotes. They are distantly related to vertebrate hemoglobins and are typically shorter than these by 20-40 residues. The multiple amino acid deletions, insertions, and replacements result in distinctive alterations of the canonical globin fold and a wide range of chemical properties. An early phylogenetic analysis categorized trHbs into three groups, I (trHbN), II (trHbO), and III (trHbP). Here, we revisit this analysis with 111 trHbs. We find that trHbs are orthologous within each group and paralogous across the groups. Group I globins form the most disparate set and separate into two divergent subgroups. Group II is comparatively homogeneous, whereas Group III displays the highest level of overall conservation. In Group I and Group II globins, for which some ligand binding and structural data are available, an improved description of probable protein-ligand interactions is achieved. Other conservation trends are either confirmed (essential glycines in loops), refined (lining of ligand access tunnel), or newly identified (helix start signal). The Group III globins, so far uncharacterized, exhibit recognizable heme cavity residues while lacking some of the residues thought to be important to the trHb fold. An analysis of the phylogenetic trees of each group provides a plausible scenario for the emergence of trHbs, by which the Group II trHb gene was the original gene, and the Group I trHb and Group III trHb genes were obtained via duplication and transfer events.</description><subject>Amino Acid Sequence</subject><subject>Amino acids</subject><subject>Animals</subject><subject>Bacteria</subject><subject>Chemical properties</subject><subject>Conserved Sequence</subject><subject>Evolution, Molecular</subject><subject>Gene Transfer, Horizontal</subject><subject>Hemoglobins - genetics</subject><subject>Ligands</subject><subject>Models, Genetic</subject><subject>Molecular Sequence Data</subject><subject>Phylogeny</subject><subject>Protein Structure, Quaternary</subject><subject>Sequence Homology, Amino Acid</subject><subject>Structural analysis</subject><subject>Truncated Hemoglobins</subject><issn>0022-2844</issn><issn>1432-1432</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2006</creationdate><recordtype>article</recordtype><recordid>eNqFkU1LAzEQhoMotlZ_gBdZPHhbzeQ7J5HiFxS86DlkN9l2y3ZTk91D_70pLQhePMwMM_PMwMyL0DXge8BYPiSMCdUlxjyblCU7QVNglJR7d4qmuU1KohiboIuU1hiD5JqeowkIJpmWeooen4rtateFpe_90NaF7V2RhjjWwxhtl1Pb7VKbitAUudrXdvCuWPlNWHahavt0ic4a2yV_dYwz9PXy_Dl_Kxcfr-_zp0VZM0KHknnmoNLSAeBGMswxKKY8p6p2DnSDKWO6EU7iRmmloXJKCFtJELTKtwCdobvD3m0M36NPg9m0qfZdZ3sfxmSElIRxJf4FQROtJZcZvP0DrsMY873JqPxNLhQnGYIDVMeQUvSN2cZ2Y-POADZ7DcxBA5M1MHsNDMszN8fFY7Xx7nfi-HT6A8F_f-I</recordid><startdate>200602</startdate><enddate>200602</enddate><creator>Vuletich, David A</creator><creator>Lecomte, Juliette T J</creator><general>Springer Nature B.V</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QL</scope><scope>7QP</scope><scope>7QR</scope><scope>7T7</scope><scope>7TK</scope><scope>7U9</scope><scope>7X7</scope><scope>7XB</scope><scope>88A</scope><scope>88E</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>8G5</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M2O</scope><scope>M7N</scope><scope>M7P</scope><scope>MBDVC</scope><scope>P64</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>Q9U</scope><scope>RC3</scope><scope>7X8</scope></search><sort><creationdate>200602</creationdate><title>A phylogenetic and structural analysis of truncated hemoglobins</title><author>Vuletich, David A ; Lecomte, Juliette T J</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c423t-4e4d1b97d110f740501848e538cdd19f03449f6d70f89891bd866ab7163b43213</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2006</creationdate><topic>Amino Acid Sequence</topic><topic>Amino acids</topic><topic>Animals</topic><topic>Bacteria</topic><topic>Chemical properties</topic><topic>Conserved Sequence</topic><topic>Evolution, Molecular</topic><topic>Gene Transfer, Horizontal</topic><topic>Hemoglobins - genetics</topic><topic>Ligands</topic><topic>Models, Genetic</topic><topic>Molecular Sequence Data</topic><topic>Phylogeny</topic><topic>Protein Structure, Quaternary</topic><topic>Sequence Homology, Amino Acid</topic><topic>Structural analysis</topic><topic>Truncated Hemoglobins</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Vuletich, David A</creatorcontrib><creatorcontrib>Lecomte, Juliette T J</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Neurosciences Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Health &amp; Medical Complete (ProQuest Database)</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>AUTh Library subscriptions: ProQuest Central</collection><collection>ProQuest Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection (Proquest) (PQ_SDU_P3)</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Research Library (ProQuest Database)</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>ProQuest Biological Science Journals</collection><collection>Research Library (Corporate)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central Basic</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>Journal of molecular evolution</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Vuletich, David A</au><au>Lecomte, Juliette T J</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A phylogenetic and structural analysis of truncated hemoglobins</atitle><jtitle>Journal of molecular evolution</jtitle><addtitle>J Mol Evol</addtitle><date>2006-02</date><risdate>2006</risdate><volume>62</volume><issue>2</issue><spage>196</spage><epage>210</epage><pages>196-210</pages><issn>0022-2844</issn><eissn>1432-1432</eissn><abstract>Truncated hemoglobins (trHbs) are heme proteins found in bacteria, plants, and unicellular eukaryotes. They are distantly related to vertebrate hemoglobins and are typically shorter than these by 20-40 residues. The multiple amino acid deletions, insertions, and replacements result in distinctive alterations of the canonical globin fold and a wide range of chemical properties. An early phylogenetic analysis categorized trHbs into three groups, I (trHbN), II (trHbO), and III (trHbP). Here, we revisit this analysis with 111 trHbs. We find that trHbs are orthologous within each group and paralogous across the groups. Group I globins form the most disparate set and separate into two divergent subgroups. Group II is comparatively homogeneous, whereas Group III displays the highest level of overall conservation. In Group I and Group II globins, for which some ligand binding and structural data are available, an improved description of probable protein-ligand interactions is achieved. Other conservation trends are either confirmed (essential glycines in loops), refined (lining of ligand access tunnel), or newly identified (helix start signal). The Group III globins, so far uncharacterized, exhibit recognizable heme cavity residues while lacking some of the residues thought to be important to the trHb fold. An analysis of the phylogenetic trees of each group provides a plausible scenario for the emergence of trHbs, by which the Group II trHb gene was the original gene, and the Group I trHb and Group III trHb genes were obtained via duplication and transfer events.</abstract><cop>Germany</cop><pub>Springer Nature B.V</pub><pmid>16474979</pmid><doi>10.1007/s00239-005-0077-4</doi><tpages>15</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0022-2844
ispartof Journal of molecular evolution, 2006-02, Vol.62 (2), p.196-210
issn 0022-2844
1432-1432
language eng
recordid cdi_proquest_miscellaneous_67724586
source Springer Nature
subjects Amino Acid Sequence
Amino acids
Animals
Bacteria
Chemical properties
Conserved Sequence
Evolution, Molecular
Gene Transfer, Horizontal
Hemoglobins - genetics
Ligands
Models, Genetic
Molecular Sequence Data
Phylogeny
Protein Structure, Quaternary
Sequence Homology, Amino Acid
Structural analysis
Truncated Hemoglobins
title A phylogenetic and structural analysis of truncated hemoglobins
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-02T18%3A15%3A49IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20phylogenetic%20and%20structural%20analysis%20of%20truncated%20hemoglobins&rft.jtitle=Journal%20of%20molecular%20evolution&rft.au=Vuletich,%20David%20A&rft.date=2006-02&rft.volume=62&rft.issue=2&rft.spage=196&rft.epage=210&rft.pages=196-210&rft.issn=0022-2844&rft.eissn=1432-1432&rft_id=info:doi/10.1007/s00239-005-0077-4&rft_dat=%3Cproquest_cross%3E19299757%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c423t-4e4d1b97d110f740501848e538cdd19f03449f6d70f89891bd866ab7163b43213%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=800756852&rft_id=info:pmid/16474979&rfr_iscdi=true