Loading…

A SCA7 CAG/CTG repeat expansion is stable in Drosophila melanogaster despite modulation of genomic context and gene dosage

CAG and CTG repeat expansions are the cause of at least a dozen inherited neurological disorders. In these so-called “dynamic mutation” diseases, the expanded repeats display dramatic genetic instability, changing in size when transmitted through the germline and within somatic tissues. As the molec...

Full description

Saved in:
Bibliographic Details
Published in:Gene 2005-02, Vol.347 (1), p.35-41
Main Authors: Jackson, Stephen M., Whitworth, Alex J., Greene, Jessica C., Libby, Randell T., Baccam, Sandy L., Pallanck, Leo J., La Spada, Albert R.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c416t-e1fe9990c467954986bc0c45d3b9b60e88c4a0d4434b35625761a705f7fda2ce3
cites cdi_FETCH-LOGICAL-c416t-e1fe9990c467954986bc0c45d3b9b60e88c4a0d4434b35625761a705f7fda2ce3
container_end_page 41
container_issue 1
container_start_page 35
container_title Gene
container_volume 347
creator Jackson, Stephen M.
Whitworth, Alex J.
Greene, Jessica C.
Libby, Randell T.
Baccam, Sandy L.
Pallanck, Leo J.
La Spada, Albert R.
description CAG and CTG repeat expansions are the cause of at least a dozen inherited neurological disorders. In these so-called “dynamic mutation” diseases, the expanded repeats display dramatic genetic instability, changing in size when transmitted through the germline and within somatic tissues. As the molecular basis of the repeat instability process remains poorly understood, modeling of repeat instability in model organisms has provided some insights into potentially involved factors, implicating especially replication and repair pathways. Studies in mice have also shown that the genomic context of the repeat sequence is required for CAG/CTG repeat instability in the case of spinocerebellar ataxia type 7 (SCA7), one of the most unstable of all CAG/CTG repeat disease loci. While most studies of repeat instability have taken a candidate gene approach, unbiased screens for factors involved in trinucleotide repeat instability have been lacking. We therefore attempted to use Drosophila melanogaster to model expanded CAG repeat instability by creating transgenic flies carrying trinucleotide repeat expansions, deriving flies with SCA7 CAG90 repeats in cDNA and genomic context. We found that SCA7 CAG90 repeats are stable in Drosophila, regardless of context. To screen for genes whose reduced function might destabilize expanded CAG repeat tracts in Drosophila, we crossed the SCA7 CAG90 repeat flies with various deficiency stocks, including lines lacking genes encoding the orthologues of flap endonuclease-1, PCNA, and MutS. In all cases, perfect repeat stability was preserved, suggesting that Drosophila may not be a suitable system for determining the molecular basis of SCA7 CAG repeat instability.
doi_str_mv 10.1016/j.gene.2004.12.008
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_67729048</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0378111904007383</els_id><sourcerecordid>67729048</sourcerecordid><originalsourceid>FETCH-LOGICAL-c416t-e1fe9990c467954986bc0c45d3b9b60e88c4a0d4434b35625761a705f7fda2ce3</originalsourceid><addsrcrecordid>eNqFkUFv1DAQhS0EotvCH-CAfOKW1Hbs2Ja4rAJdkCpxoJwtx54sXiVxiL1V4dfj1a7Ejc7FGut7T6P3EHpHSU0JbW8P9R5mqBkhvKasJkS9QBuqpK4IadRLtCGNVBWlVF-h65QOpIwQ7DW6okJSoaXaoD9b_L3bStxtd7fdww6vsIDNGJ4WO6cQZxwSTtn2I-Aw409rTHH5GUaLJxjtHPc2ZVixh7SEDHiK_jjafNLFAZfr4hQcdnHO8JSxnf3pD7CPye7hDXo12DHB28t7g37cfX7ovlT333Zfu-195ThtcwV0AK01cbyVWnCt2t6VRfim131LQCnHLfGcN7xvRMuEbKmVRAxy8JY5aG7Qh7PvssZfR0jZTCE5GMv9EI_JtFIyTbh6FmREUS7U8yCVomGa8QKyM-hKcGmFwSxrmOz621BiTh2agzklYk4dGspM6bCI3l_cj_0E_p_kUloBPp4BKKk9BlhNcgFmBz6s4LLxMfzP_y9IdKzG</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>17532924</pqid></control><display><type>article</type><title>A SCA7 CAG/CTG repeat expansion is stable in Drosophila melanogaster despite modulation of genomic context and gene dosage</title><source>Elsevier</source><creator>Jackson, Stephen M. ; Whitworth, Alex J. ; Greene, Jessica C. ; Libby, Randell T. ; Baccam, Sandy L. ; Pallanck, Leo J. ; La Spada, Albert R.</creator><creatorcontrib>Jackson, Stephen M. ; Whitworth, Alex J. ; Greene, Jessica C. ; Libby, Randell T. ; Baccam, Sandy L. ; Pallanck, Leo J. ; La Spada, Albert R.</creatorcontrib><description>CAG and CTG repeat expansions are the cause of at least a dozen inherited neurological disorders. In these so-called “dynamic mutation” diseases, the expanded repeats display dramatic genetic instability, changing in size when transmitted through the germline and within somatic tissues. As the molecular basis of the repeat instability process remains poorly understood, modeling of repeat instability in model organisms has provided some insights into potentially involved factors, implicating especially replication and repair pathways. Studies in mice have also shown that the genomic context of the repeat sequence is required for CAG/CTG repeat instability in the case of spinocerebellar ataxia type 7 (SCA7), one of the most unstable of all CAG/CTG repeat disease loci. While most studies of repeat instability have taken a candidate gene approach, unbiased screens for factors involved in trinucleotide repeat instability have been lacking. We therefore attempted to use Drosophila melanogaster to model expanded CAG repeat instability by creating transgenic flies carrying trinucleotide repeat expansions, deriving flies with SCA7 CAG90 repeats in cDNA and genomic context. We found that SCA7 CAG90 repeats are stable in Drosophila, regardless of context. To screen for genes whose reduced function might destabilize expanded CAG repeat tracts in Drosophila, we crossed the SCA7 CAG90 repeat flies with various deficiency stocks, including lines lacking genes encoding the orthologues of flap endonuclease-1, PCNA, and MutS. In all cases, perfect repeat stability was preserved, suggesting that Drosophila may not be a suitable system for determining the molecular basis of SCA7 CAG repeat instability.</description><identifier>ISSN: 0378-1119</identifier><identifier>EISSN: 1879-0038</identifier><identifier>DOI: 10.1016/j.gene.2004.12.008</identifier><identifier>PMID: 15715978</identifier><language>eng</language><publisher>Netherlands: Elsevier B.V</publisher><subject>Animals ; Animals, Genetically Modified ; Ataxin-7 ; Deficiency stock ; Disease Models, Animal ; DNA - genetics ; DNA - metabolism ; DNA Repair Enzymes - genetics ; DNA Repair Enzymes - metabolism ; Drosophila melanogaster ; Drosophila Proteins - genetics ; Drosophila Proteins - metabolism ; Flap Endonucleases - genetics ; Flap Endonucleases - metabolism ; Gene Dosage ; Genome ; Genomic context ; Genomic Instability - genetics ; Genomic Instability - physiology ; Modifier screen ; Nerve Tissue Proteins - genetics ; Nerve Tissue Proteins - metabolism ; Proliferating Cell Nuclear Antigen - genetics ; Proliferating Cell Nuclear Antigen - metabolism ; Quantitative Trait Loci - genetics ; Quantitative Trait Loci - physiology ; Repeat instability ; Spinocerebellar ataxia type 7 ; Spinocerebellar Degenerations - genetics ; Spinocerebellar Degenerations - physiopathology ; Trans-acting factor ; Trinucleotide ; Trinucleotide Repeat Expansion - genetics ; Trinucleotide Repeat Expansion - physiology</subject><ispartof>Gene, 2005-02, Vol.347 (1), p.35-41</ispartof><rights>2004 Elsevier B.V.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c416t-e1fe9990c467954986bc0c45d3b9b60e88c4a0d4434b35625761a705f7fda2ce3</citedby><cites>FETCH-LOGICAL-c416t-e1fe9990c467954986bc0c45d3b9b60e88c4a0d4434b35625761a705f7fda2ce3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/15715978$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Jackson, Stephen M.</creatorcontrib><creatorcontrib>Whitworth, Alex J.</creatorcontrib><creatorcontrib>Greene, Jessica C.</creatorcontrib><creatorcontrib>Libby, Randell T.</creatorcontrib><creatorcontrib>Baccam, Sandy L.</creatorcontrib><creatorcontrib>Pallanck, Leo J.</creatorcontrib><creatorcontrib>La Spada, Albert R.</creatorcontrib><title>A SCA7 CAG/CTG repeat expansion is stable in Drosophila melanogaster despite modulation of genomic context and gene dosage</title><title>Gene</title><addtitle>Gene</addtitle><description>CAG and CTG repeat expansions are the cause of at least a dozen inherited neurological disorders. In these so-called “dynamic mutation” diseases, the expanded repeats display dramatic genetic instability, changing in size when transmitted through the germline and within somatic tissues. As the molecular basis of the repeat instability process remains poorly understood, modeling of repeat instability in model organisms has provided some insights into potentially involved factors, implicating especially replication and repair pathways. Studies in mice have also shown that the genomic context of the repeat sequence is required for CAG/CTG repeat instability in the case of spinocerebellar ataxia type 7 (SCA7), one of the most unstable of all CAG/CTG repeat disease loci. While most studies of repeat instability have taken a candidate gene approach, unbiased screens for factors involved in trinucleotide repeat instability have been lacking. We therefore attempted to use Drosophila melanogaster to model expanded CAG repeat instability by creating transgenic flies carrying trinucleotide repeat expansions, deriving flies with SCA7 CAG90 repeats in cDNA and genomic context. We found that SCA7 CAG90 repeats are stable in Drosophila, regardless of context. To screen for genes whose reduced function might destabilize expanded CAG repeat tracts in Drosophila, we crossed the SCA7 CAG90 repeat flies with various deficiency stocks, including lines lacking genes encoding the orthologues of flap endonuclease-1, PCNA, and MutS. In all cases, perfect repeat stability was preserved, suggesting that Drosophila may not be a suitable system for determining the molecular basis of SCA7 CAG repeat instability.</description><subject>Animals</subject><subject>Animals, Genetically Modified</subject><subject>Ataxin-7</subject><subject>Deficiency stock</subject><subject>Disease Models, Animal</subject><subject>DNA - genetics</subject><subject>DNA - metabolism</subject><subject>DNA Repair Enzymes - genetics</subject><subject>DNA Repair Enzymes - metabolism</subject><subject>Drosophila melanogaster</subject><subject>Drosophila Proteins - genetics</subject><subject>Drosophila Proteins - metabolism</subject><subject>Flap Endonucleases - genetics</subject><subject>Flap Endonucleases - metabolism</subject><subject>Gene Dosage</subject><subject>Genome</subject><subject>Genomic context</subject><subject>Genomic Instability - genetics</subject><subject>Genomic Instability - physiology</subject><subject>Modifier screen</subject><subject>Nerve Tissue Proteins - genetics</subject><subject>Nerve Tissue Proteins - metabolism</subject><subject>Proliferating Cell Nuclear Antigen - genetics</subject><subject>Proliferating Cell Nuclear Antigen - metabolism</subject><subject>Quantitative Trait Loci - genetics</subject><subject>Quantitative Trait Loci - physiology</subject><subject>Repeat instability</subject><subject>Spinocerebellar ataxia type 7</subject><subject>Spinocerebellar Degenerations - genetics</subject><subject>Spinocerebellar Degenerations - physiopathology</subject><subject>Trans-acting factor</subject><subject>Trinucleotide</subject><subject>Trinucleotide Repeat Expansion - genetics</subject><subject>Trinucleotide Repeat Expansion - physiology</subject><issn>0378-1119</issn><issn>1879-0038</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2005</creationdate><recordtype>article</recordtype><recordid>eNqFkUFv1DAQhS0EotvCH-CAfOKW1Hbs2Ja4rAJdkCpxoJwtx54sXiVxiL1V4dfj1a7Ejc7FGut7T6P3EHpHSU0JbW8P9R5mqBkhvKasJkS9QBuqpK4IadRLtCGNVBWlVF-h65QOpIwQ7DW6okJSoaXaoD9b_L3bStxtd7fdww6vsIDNGJ4WO6cQZxwSTtn2I-Aw409rTHH5GUaLJxjtHPc2ZVixh7SEDHiK_jjafNLFAZfr4hQcdnHO8JSxnf3pD7CPye7hDXo12DHB28t7g37cfX7ovlT333Zfu-195ThtcwV0AK01cbyVWnCt2t6VRfim131LQCnHLfGcN7xvRMuEbKmVRAxy8JY5aG7Qh7PvssZfR0jZTCE5GMv9EI_JtFIyTbh6FmREUS7U8yCVomGa8QKyM-hKcGmFwSxrmOz621BiTh2agzklYk4dGspM6bCI3l_cj_0E_p_kUloBPp4BKKk9BlhNcgFmBz6s4LLxMfzP_y9IdKzG</recordid><startdate>20050228</startdate><enddate>20050228</enddate><creator>Jackson, Stephen M.</creator><creator>Whitworth, Alex J.</creator><creator>Greene, Jessica C.</creator><creator>Libby, Randell T.</creator><creator>Baccam, Sandy L.</creator><creator>Pallanck, Leo J.</creator><creator>La Spada, Albert R.</creator><general>Elsevier B.V</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SS</scope><scope>8FD</scope><scope>FR3</scope><scope>P64</scope><scope>RC3</scope><scope>7TK</scope><scope>7X8</scope></search><sort><creationdate>20050228</creationdate><title>A SCA7 CAG/CTG repeat expansion is stable in Drosophila melanogaster despite modulation of genomic context and gene dosage</title><author>Jackson, Stephen M. ; Whitworth, Alex J. ; Greene, Jessica C. ; Libby, Randell T. ; Baccam, Sandy L. ; Pallanck, Leo J. ; La Spada, Albert R.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c416t-e1fe9990c467954986bc0c45d3b9b60e88c4a0d4434b35625761a705f7fda2ce3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2005</creationdate><topic>Animals</topic><topic>Animals, Genetically Modified</topic><topic>Ataxin-7</topic><topic>Deficiency stock</topic><topic>Disease Models, Animal</topic><topic>DNA - genetics</topic><topic>DNA - metabolism</topic><topic>DNA Repair Enzymes - genetics</topic><topic>DNA Repair Enzymes - metabolism</topic><topic>Drosophila melanogaster</topic><topic>Drosophila Proteins - genetics</topic><topic>Drosophila Proteins - metabolism</topic><topic>Flap Endonucleases - genetics</topic><topic>Flap Endonucleases - metabolism</topic><topic>Gene Dosage</topic><topic>Genome</topic><topic>Genomic context</topic><topic>Genomic Instability - genetics</topic><topic>Genomic Instability - physiology</topic><topic>Modifier screen</topic><topic>Nerve Tissue Proteins - genetics</topic><topic>Nerve Tissue Proteins - metabolism</topic><topic>Proliferating Cell Nuclear Antigen - genetics</topic><topic>Proliferating Cell Nuclear Antigen - metabolism</topic><topic>Quantitative Trait Loci - genetics</topic><topic>Quantitative Trait Loci - physiology</topic><topic>Repeat instability</topic><topic>Spinocerebellar ataxia type 7</topic><topic>Spinocerebellar Degenerations - genetics</topic><topic>Spinocerebellar Degenerations - physiopathology</topic><topic>Trans-acting factor</topic><topic>Trinucleotide</topic><topic>Trinucleotide Repeat Expansion - genetics</topic><topic>Trinucleotide Repeat Expansion - physiology</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Jackson, Stephen M.</creatorcontrib><creatorcontrib>Whitworth, Alex J.</creatorcontrib><creatorcontrib>Greene, Jessica C.</creatorcontrib><creatorcontrib>Libby, Randell T.</creatorcontrib><creatorcontrib>Baccam, Sandy L.</creatorcontrib><creatorcontrib>Pallanck, Leo J.</creatorcontrib><creatorcontrib>La Spada, Albert R.</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>Gene</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Jackson, Stephen M.</au><au>Whitworth, Alex J.</au><au>Greene, Jessica C.</au><au>Libby, Randell T.</au><au>Baccam, Sandy L.</au><au>Pallanck, Leo J.</au><au>La Spada, Albert R.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A SCA7 CAG/CTG repeat expansion is stable in Drosophila melanogaster despite modulation of genomic context and gene dosage</atitle><jtitle>Gene</jtitle><addtitle>Gene</addtitle><date>2005-02-28</date><risdate>2005</risdate><volume>347</volume><issue>1</issue><spage>35</spage><epage>41</epage><pages>35-41</pages><issn>0378-1119</issn><eissn>1879-0038</eissn><abstract>CAG and CTG repeat expansions are the cause of at least a dozen inherited neurological disorders. In these so-called “dynamic mutation” diseases, the expanded repeats display dramatic genetic instability, changing in size when transmitted through the germline and within somatic tissues. As the molecular basis of the repeat instability process remains poorly understood, modeling of repeat instability in model organisms has provided some insights into potentially involved factors, implicating especially replication and repair pathways. Studies in mice have also shown that the genomic context of the repeat sequence is required for CAG/CTG repeat instability in the case of spinocerebellar ataxia type 7 (SCA7), one of the most unstable of all CAG/CTG repeat disease loci. While most studies of repeat instability have taken a candidate gene approach, unbiased screens for factors involved in trinucleotide repeat instability have been lacking. We therefore attempted to use Drosophila melanogaster to model expanded CAG repeat instability by creating transgenic flies carrying trinucleotide repeat expansions, deriving flies with SCA7 CAG90 repeats in cDNA and genomic context. We found that SCA7 CAG90 repeats are stable in Drosophila, regardless of context. To screen for genes whose reduced function might destabilize expanded CAG repeat tracts in Drosophila, we crossed the SCA7 CAG90 repeat flies with various deficiency stocks, including lines lacking genes encoding the orthologues of flap endonuclease-1, PCNA, and MutS. In all cases, perfect repeat stability was preserved, suggesting that Drosophila may not be a suitable system for determining the molecular basis of SCA7 CAG repeat instability.</abstract><cop>Netherlands</cop><pub>Elsevier B.V</pub><pmid>15715978</pmid><doi>10.1016/j.gene.2004.12.008</doi><tpages>7</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0378-1119
ispartof Gene, 2005-02, Vol.347 (1), p.35-41
issn 0378-1119
1879-0038
language eng
recordid cdi_proquest_miscellaneous_67729048
source Elsevier
subjects Animals
Animals, Genetically Modified
Ataxin-7
Deficiency stock
Disease Models, Animal
DNA - genetics
DNA - metabolism
DNA Repair Enzymes - genetics
DNA Repair Enzymes - metabolism
Drosophila melanogaster
Drosophila Proteins - genetics
Drosophila Proteins - metabolism
Flap Endonucleases - genetics
Flap Endonucleases - metabolism
Gene Dosage
Genome
Genomic context
Genomic Instability - genetics
Genomic Instability - physiology
Modifier screen
Nerve Tissue Proteins - genetics
Nerve Tissue Proteins - metabolism
Proliferating Cell Nuclear Antigen - genetics
Proliferating Cell Nuclear Antigen - metabolism
Quantitative Trait Loci - genetics
Quantitative Trait Loci - physiology
Repeat instability
Spinocerebellar ataxia type 7
Spinocerebellar Degenerations - genetics
Spinocerebellar Degenerations - physiopathology
Trans-acting factor
Trinucleotide
Trinucleotide Repeat Expansion - genetics
Trinucleotide Repeat Expansion - physiology
title A SCA7 CAG/CTG repeat expansion is stable in Drosophila melanogaster despite modulation of genomic context and gene dosage
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-27T07%3A55%3A08IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20SCA7%20CAG/CTG%20repeat%20expansion%20is%20stable%20in%20Drosophila%20melanogaster%20despite%20modulation%20of%20genomic%20context%20and%20gene%20dosage&rft.jtitle=Gene&rft.au=Jackson,%20Stephen%20M.&rft.date=2005-02-28&rft.volume=347&rft.issue=1&rft.spage=35&rft.epage=41&rft.pages=35-41&rft.issn=0378-1119&rft.eissn=1879-0038&rft_id=info:doi/10.1016/j.gene.2004.12.008&rft_dat=%3Cproquest_cross%3E67729048%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c416t-e1fe9990c467954986bc0c45d3b9b60e88c4a0d4434b35625761a705f7fda2ce3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=17532924&rft_id=info:pmid/15715978&rfr_iscdi=true