Loading…
A SCA7 CAG/CTG repeat expansion is stable in Drosophila melanogaster despite modulation of genomic context and gene dosage
CAG and CTG repeat expansions are the cause of at least a dozen inherited neurological disorders. In these so-called “dynamic mutation” diseases, the expanded repeats display dramatic genetic instability, changing in size when transmitted through the germline and within somatic tissues. As the molec...
Saved in:
Published in: | Gene 2005-02, Vol.347 (1), p.35-41 |
---|---|
Main Authors: | , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c416t-e1fe9990c467954986bc0c45d3b9b60e88c4a0d4434b35625761a705f7fda2ce3 |
---|---|
cites | cdi_FETCH-LOGICAL-c416t-e1fe9990c467954986bc0c45d3b9b60e88c4a0d4434b35625761a705f7fda2ce3 |
container_end_page | 41 |
container_issue | 1 |
container_start_page | 35 |
container_title | Gene |
container_volume | 347 |
creator | Jackson, Stephen M. Whitworth, Alex J. Greene, Jessica C. Libby, Randell T. Baccam, Sandy L. Pallanck, Leo J. La Spada, Albert R. |
description | CAG and CTG repeat expansions are the cause of at least a dozen inherited neurological disorders. In these so-called “dynamic mutation” diseases, the expanded repeats display dramatic genetic instability, changing in size when transmitted through the germline and within somatic tissues. As the molecular basis of the repeat instability process remains poorly understood, modeling of repeat instability in model organisms has provided some insights into potentially involved factors, implicating especially replication and repair pathways. Studies in mice have also shown that the genomic context of the repeat sequence is required for CAG/CTG repeat instability in the case of spinocerebellar ataxia type 7 (SCA7), one of the most unstable of all CAG/CTG repeat disease loci. While most studies of repeat instability have taken a candidate gene approach, unbiased screens for factors involved in trinucleotide repeat instability have been lacking. We therefore attempted to use
Drosophila melanogaster to model expanded CAG repeat instability by creating transgenic flies carrying trinucleotide repeat expansions, deriving flies with SCA7 CAG90 repeats in cDNA and genomic context. We found that SCA7 CAG90 repeats are stable in
Drosophila, regardless of context. To screen for genes whose reduced function might destabilize expanded CAG repeat tracts in
Drosophila, we crossed the SCA7 CAG90 repeat flies with various deficiency stocks, including lines lacking genes encoding the orthologues of flap endonuclease-1, PCNA, and MutS. In all cases, perfect repeat stability was preserved, suggesting that
Drosophila may not be a suitable system for determining the molecular basis of SCA7 CAG repeat instability. |
doi_str_mv | 10.1016/j.gene.2004.12.008 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_67729048</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0378111904007383</els_id><sourcerecordid>67729048</sourcerecordid><originalsourceid>FETCH-LOGICAL-c416t-e1fe9990c467954986bc0c45d3b9b60e88c4a0d4434b35625761a705f7fda2ce3</originalsourceid><addsrcrecordid>eNqFkUFv1DAQhS0EotvCH-CAfOKW1Hbs2Ja4rAJdkCpxoJwtx54sXiVxiL1V4dfj1a7Ejc7FGut7T6P3EHpHSU0JbW8P9R5mqBkhvKasJkS9QBuqpK4IadRLtCGNVBWlVF-h65QOpIwQ7DW6okJSoaXaoD9b_L3bStxtd7fdww6vsIDNGJ4WO6cQZxwSTtn2I-Aw409rTHH5GUaLJxjtHPc2ZVixh7SEDHiK_jjafNLFAZfr4hQcdnHO8JSxnf3pD7CPye7hDXo12DHB28t7g37cfX7ovlT333Zfu-195ThtcwV0AK01cbyVWnCt2t6VRfim131LQCnHLfGcN7xvRMuEbKmVRAxy8JY5aG7Qh7PvssZfR0jZTCE5GMv9EI_JtFIyTbh6FmREUS7U8yCVomGa8QKyM-hKcGmFwSxrmOz621BiTh2agzklYk4dGspM6bCI3l_cj_0E_p_kUloBPp4BKKk9BlhNcgFmBz6s4LLxMfzP_y9IdKzG</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>17532924</pqid></control><display><type>article</type><title>A SCA7 CAG/CTG repeat expansion is stable in Drosophila melanogaster despite modulation of genomic context and gene dosage</title><source>Elsevier</source><creator>Jackson, Stephen M. ; Whitworth, Alex J. ; Greene, Jessica C. ; Libby, Randell T. ; Baccam, Sandy L. ; Pallanck, Leo J. ; La Spada, Albert R.</creator><creatorcontrib>Jackson, Stephen M. ; Whitworth, Alex J. ; Greene, Jessica C. ; Libby, Randell T. ; Baccam, Sandy L. ; Pallanck, Leo J. ; La Spada, Albert R.</creatorcontrib><description>CAG and CTG repeat expansions are the cause of at least a dozen inherited neurological disorders. In these so-called “dynamic mutation” diseases, the expanded repeats display dramatic genetic instability, changing in size when transmitted through the germline and within somatic tissues. As the molecular basis of the repeat instability process remains poorly understood, modeling of repeat instability in model organisms has provided some insights into potentially involved factors, implicating especially replication and repair pathways. Studies in mice have also shown that the genomic context of the repeat sequence is required for CAG/CTG repeat instability in the case of spinocerebellar ataxia type 7 (SCA7), one of the most unstable of all CAG/CTG repeat disease loci. While most studies of repeat instability have taken a candidate gene approach, unbiased screens for factors involved in trinucleotide repeat instability have been lacking. We therefore attempted to use
Drosophila melanogaster to model expanded CAG repeat instability by creating transgenic flies carrying trinucleotide repeat expansions, deriving flies with SCA7 CAG90 repeats in cDNA and genomic context. We found that SCA7 CAG90 repeats are stable in
Drosophila, regardless of context. To screen for genes whose reduced function might destabilize expanded CAG repeat tracts in
Drosophila, we crossed the SCA7 CAG90 repeat flies with various deficiency stocks, including lines lacking genes encoding the orthologues of flap endonuclease-1, PCNA, and MutS. In all cases, perfect repeat stability was preserved, suggesting that
Drosophila may not be a suitable system for determining the molecular basis of SCA7 CAG repeat instability.</description><identifier>ISSN: 0378-1119</identifier><identifier>EISSN: 1879-0038</identifier><identifier>DOI: 10.1016/j.gene.2004.12.008</identifier><identifier>PMID: 15715978</identifier><language>eng</language><publisher>Netherlands: Elsevier B.V</publisher><subject>Animals ; Animals, Genetically Modified ; Ataxin-7 ; Deficiency stock ; Disease Models, Animal ; DNA - genetics ; DNA - metabolism ; DNA Repair Enzymes - genetics ; DNA Repair Enzymes - metabolism ; Drosophila melanogaster ; Drosophila Proteins - genetics ; Drosophila Proteins - metabolism ; Flap Endonucleases - genetics ; Flap Endonucleases - metabolism ; Gene Dosage ; Genome ; Genomic context ; Genomic Instability - genetics ; Genomic Instability - physiology ; Modifier screen ; Nerve Tissue Proteins - genetics ; Nerve Tissue Proteins - metabolism ; Proliferating Cell Nuclear Antigen - genetics ; Proliferating Cell Nuclear Antigen - metabolism ; Quantitative Trait Loci - genetics ; Quantitative Trait Loci - physiology ; Repeat instability ; Spinocerebellar ataxia type 7 ; Spinocerebellar Degenerations - genetics ; Spinocerebellar Degenerations - physiopathology ; Trans-acting factor ; Trinucleotide ; Trinucleotide Repeat Expansion - genetics ; Trinucleotide Repeat Expansion - physiology</subject><ispartof>Gene, 2005-02, Vol.347 (1), p.35-41</ispartof><rights>2004 Elsevier B.V.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c416t-e1fe9990c467954986bc0c45d3b9b60e88c4a0d4434b35625761a705f7fda2ce3</citedby><cites>FETCH-LOGICAL-c416t-e1fe9990c467954986bc0c45d3b9b60e88c4a0d4434b35625761a705f7fda2ce3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/15715978$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Jackson, Stephen M.</creatorcontrib><creatorcontrib>Whitworth, Alex J.</creatorcontrib><creatorcontrib>Greene, Jessica C.</creatorcontrib><creatorcontrib>Libby, Randell T.</creatorcontrib><creatorcontrib>Baccam, Sandy L.</creatorcontrib><creatorcontrib>Pallanck, Leo J.</creatorcontrib><creatorcontrib>La Spada, Albert R.</creatorcontrib><title>A SCA7 CAG/CTG repeat expansion is stable in Drosophila melanogaster despite modulation of genomic context and gene dosage</title><title>Gene</title><addtitle>Gene</addtitle><description>CAG and CTG repeat expansions are the cause of at least a dozen inherited neurological disorders. In these so-called “dynamic mutation” diseases, the expanded repeats display dramatic genetic instability, changing in size when transmitted through the germline and within somatic tissues. As the molecular basis of the repeat instability process remains poorly understood, modeling of repeat instability in model organisms has provided some insights into potentially involved factors, implicating especially replication and repair pathways. Studies in mice have also shown that the genomic context of the repeat sequence is required for CAG/CTG repeat instability in the case of spinocerebellar ataxia type 7 (SCA7), one of the most unstable of all CAG/CTG repeat disease loci. While most studies of repeat instability have taken a candidate gene approach, unbiased screens for factors involved in trinucleotide repeat instability have been lacking. We therefore attempted to use
Drosophila melanogaster to model expanded CAG repeat instability by creating transgenic flies carrying trinucleotide repeat expansions, deriving flies with SCA7 CAG90 repeats in cDNA and genomic context. We found that SCA7 CAG90 repeats are stable in
Drosophila, regardless of context. To screen for genes whose reduced function might destabilize expanded CAG repeat tracts in
Drosophila, we crossed the SCA7 CAG90 repeat flies with various deficiency stocks, including lines lacking genes encoding the orthologues of flap endonuclease-1, PCNA, and MutS. In all cases, perfect repeat stability was preserved, suggesting that
Drosophila may not be a suitable system for determining the molecular basis of SCA7 CAG repeat instability.</description><subject>Animals</subject><subject>Animals, Genetically Modified</subject><subject>Ataxin-7</subject><subject>Deficiency stock</subject><subject>Disease Models, Animal</subject><subject>DNA - genetics</subject><subject>DNA - metabolism</subject><subject>DNA Repair Enzymes - genetics</subject><subject>DNA Repair Enzymes - metabolism</subject><subject>Drosophila melanogaster</subject><subject>Drosophila Proteins - genetics</subject><subject>Drosophila Proteins - metabolism</subject><subject>Flap Endonucleases - genetics</subject><subject>Flap Endonucleases - metabolism</subject><subject>Gene Dosage</subject><subject>Genome</subject><subject>Genomic context</subject><subject>Genomic Instability - genetics</subject><subject>Genomic Instability - physiology</subject><subject>Modifier screen</subject><subject>Nerve Tissue Proteins - genetics</subject><subject>Nerve Tissue Proteins - metabolism</subject><subject>Proliferating Cell Nuclear Antigen - genetics</subject><subject>Proliferating Cell Nuclear Antigen - metabolism</subject><subject>Quantitative Trait Loci - genetics</subject><subject>Quantitative Trait Loci - physiology</subject><subject>Repeat instability</subject><subject>Spinocerebellar ataxia type 7</subject><subject>Spinocerebellar Degenerations - genetics</subject><subject>Spinocerebellar Degenerations - physiopathology</subject><subject>Trans-acting factor</subject><subject>Trinucleotide</subject><subject>Trinucleotide Repeat Expansion - genetics</subject><subject>Trinucleotide Repeat Expansion - physiology</subject><issn>0378-1119</issn><issn>1879-0038</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2005</creationdate><recordtype>article</recordtype><recordid>eNqFkUFv1DAQhS0EotvCH-CAfOKW1Hbs2Ja4rAJdkCpxoJwtx54sXiVxiL1V4dfj1a7Ejc7FGut7T6P3EHpHSU0JbW8P9R5mqBkhvKasJkS9QBuqpK4IadRLtCGNVBWlVF-h65QOpIwQ7DW6okJSoaXaoD9b_L3bStxtd7fdww6vsIDNGJ4WO6cQZxwSTtn2I-Aw409rTHH5GUaLJxjtHPc2ZVixh7SEDHiK_jjafNLFAZfr4hQcdnHO8JSxnf3pD7CPye7hDXo12DHB28t7g37cfX7ovlT333Zfu-195ThtcwV0AK01cbyVWnCt2t6VRfim131LQCnHLfGcN7xvRMuEbKmVRAxy8JY5aG7Qh7PvssZfR0jZTCE5GMv9EI_JtFIyTbh6FmREUS7U8yCVomGa8QKyM-hKcGmFwSxrmOz621BiTh2agzklYk4dGspM6bCI3l_cj_0E_p_kUloBPp4BKKk9BlhNcgFmBz6s4LLxMfzP_y9IdKzG</recordid><startdate>20050228</startdate><enddate>20050228</enddate><creator>Jackson, Stephen M.</creator><creator>Whitworth, Alex J.</creator><creator>Greene, Jessica C.</creator><creator>Libby, Randell T.</creator><creator>Baccam, Sandy L.</creator><creator>Pallanck, Leo J.</creator><creator>La Spada, Albert R.</creator><general>Elsevier B.V</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SS</scope><scope>8FD</scope><scope>FR3</scope><scope>P64</scope><scope>RC3</scope><scope>7TK</scope><scope>7X8</scope></search><sort><creationdate>20050228</creationdate><title>A SCA7 CAG/CTG repeat expansion is stable in Drosophila melanogaster despite modulation of genomic context and gene dosage</title><author>Jackson, Stephen M. ; Whitworth, Alex J. ; Greene, Jessica C. ; Libby, Randell T. ; Baccam, Sandy L. ; Pallanck, Leo J. ; La Spada, Albert R.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c416t-e1fe9990c467954986bc0c45d3b9b60e88c4a0d4434b35625761a705f7fda2ce3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2005</creationdate><topic>Animals</topic><topic>Animals, Genetically Modified</topic><topic>Ataxin-7</topic><topic>Deficiency stock</topic><topic>Disease Models, Animal</topic><topic>DNA - genetics</topic><topic>DNA - metabolism</topic><topic>DNA Repair Enzymes - genetics</topic><topic>DNA Repair Enzymes - metabolism</topic><topic>Drosophila melanogaster</topic><topic>Drosophila Proteins - genetics</topic><topic>Drosophila Proteins - metabolism</topic><topic>Flap Endonucleases - genetics</topic><topic>Flap Endonucleases - metabolism</topic><topic>Gene Dosage</topic><topic>Genome</topic><topic>Genomic context</topic><topic>Genomic Instability - genetics</topic><topic>Genomic Instability - physiology</topic><topic>Modifier screen</topic><topic>Nerve Tissue Proteins - genetics</topic><topic>Nerve Tissue Proteins - metabolism</topic><topic>Proliferating Cell Nuclear Antigen - genetics</topic><topic>Proliferating Cell Nuclear Antigen - metabolism</topic><topic>Quantitative Trait Loci - genetics</topic><topic>Quantitative Trait Loci - physiology</topic><topic>Repeat instability</topic><topic>Spinocerebellar ataxia type 7</topic><topic>Spinocerebellar Degenerations - genetics</topic><topic>Spinocerebellar Degenerations - physiopathology</topic><topic>Trans-acting factor</topic><topic>Trinucleotide</topic><topic>Trinucleotide Repeat Expansion - genetics</topic><topic>Trinucleotide Repeat Expansion - physiology</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Jackson, Stephen M.</creatorcontrib><creatorcontrib>Whitworth, Alex J.</creatorcontrib><creatorcontrib>Greene, Jessica C.</creatorcontrib><creatorcontrib>Libby, Randell T.</creatorcontrib><creatorcontrib>Baccam, Sandy L.</creatorcontrib><creatorcontrib>Pallanck, Leo J.</creatorcontrib><creatorcontrib>La Spada, Albert R.</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>Gene</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Jackson, Stephen M.</au><au>Whitworth, Alex J.</au><au>Greene, Jessica C.</au><au>Libby, Randell T.</au><au>Baccam, Sandy L.</au><au>Pallanck, Leo J.</au><au>La Spada, Albert R.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A SCA7 CAG/CTG repeat expansion is stable in Drosophila melanogaster despite modulation of genomic context and gene dosage</atitle><jtitle>Gene</jtitle><addtitle>Gene</addtitle><date>2005-02-28</date><risdate>2005</risdate><volume>347</volume><issue>1</issue><spage>35</spage><epage>41</epage><pages>35-41</pages><issn>0378-1119</issn><eissn>1879-0038</eissn><abstract>CAG and CTG repeat expansions are the cause of at least a dozen inherited neurological disorders. In these so-called “dynamic mutation” diseases, the expanded repeats display dramatic genetic instability, changing in size when transmitted through the germline and within somatic tissues. As the molecular basis of the repeat instability process remains poorly understood, modeling of repeat instability in model organisms has provided some insights into potentially involved factors, implicating especially replication and repair pathways. Studies in mice have also shown that the genomic context of the repeat sequence is required for CAG/CTG repeat instability in the case of spinocerebellar ataxia type 7 (SCA7), one of the most unstable of all CAG/CTG repeat disease loci. While most studies of repeat instability have taken a candidate gene approach, unbiased screens for factors involved in trinucleotide repeat instability have been lacking. We therefore attempted to use
Drosophila melanogaster to model expanded CAG repeat instability by creating transgenic flies carrying trinucleotide repeat expansions, deriving flies with SCA7 CAG90 repeats in cDNA and genomic context. We found that SCA7 CAG90 repeats are stable in
Drosophila, regardless of context. To screen for genes whose reduced function might destabilize expanded CAG repeat tracts in
Drosophila, we crossed the SCA7 CAG90 repeat flies with various deficiency stocks, including lines lacking genes encoding the orthologues of flap endonuclease-1, PCNA, and MutS. In all cases, perfect repeat stability was preserved, suggesting that
Drosophila may not be a suitable system for determining the molecular basis of SCA7 CAG repeat instability.</abstract><cop>Netherlands</cop><pub>Elsevier B.V</pub><pmid>15715978</pmid><doi>10.1016/j.gene.2004.12.008</doi><tpages>7</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0378-1119 |
ispartof | Gene, 2005-02, Vol.347 (1), p.35-41 |
issn | 0378-1119 1879-0038 |
language | eng |
recordid | cdi_proquest_miscellaneous_67729048 |
source | Elsevier |
subjects | Animals Animals, Genetically Modified Ataxin-7 Deficiency stock Disease Models, Animal DNA - genetics DNA - metabolism DNA Repair Enzymes - genetics DNA Repair Enzymes - metabolism Drosophila melanogaster Drosophila Proteins - genetics Drosophila Proteins - metabolism Flap Endonucleases - genetics Flap Endonucleases - metabolism Gene Dosage Genome Genomic context Genomic Instability - genetics Genomic Instability - physiology Modifier screen Nerve Tissue Proteins - genetics Nerve Tissue Proteins - metabolism Proliferating Cell Nuclear Antigen - genetics Proliferating Cell Nuclear Antigen - metabolism Quantitative Trait Loci - genetics Quantitative Trait Loci - physiology Repeat instability Spinocerebellar ataxia type 7 Spinocerebellar Degenerations - genetics Spinocerebellar Degenerations - physiopathology Trans-acting factor Trinucleotide Trinucleotide Repeat Expansion - genetics Trinucleotide Repeat Expansion - physiology |
title | A SCA7 CAG/CTG repeat expansion is stable in Drosophila melanogaster despite modulation of genomic context and gene dosage |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-27T07%3A55%3A08IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20SCA7%20CAG/CTG%20repeat%20expansion%20is%20stable%20in%20Drosophila%20melanogaster%20despite%20modulation%20of%20genomic%20context%20and%20gene%20dosage&rft.jtitle=Gene&rft.au=Jackson,%20Stephen%20M.&rft.date=2005-02-28&rft.volume=347&rft.issue=1&rft.spage=35&rft.epage=41&rft.pages=35-41&rft.issn=0378-1119&rft.eissn=1879-0038&rft_id=info:doi/10.1016/j.gene.2004.12.008&rft_dat=%3Cproquest_cross%3E67729048%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c416t-e1fe9990c467954986bc0c45d3b9b60e88c4a0d4434b35625761a705f7fda2ce3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=17532924&rft_id=info:pmid/15715978&rfr_iscdi=true |