Loading…

Possibilities for controlling a PHB accumulation process using various analytical methods

Poly-β-hydroxybutyrate (PHB) and other polyesters can be produced by various species of bacteria. Of the possible carbon sources, methane could prove to be one of the most suitable substrates for the manufacture of PHB. The methanotrophic strain Methylocystis sp. GB 25 DSM 7674 was applied in order...

Full description

Saved in:
Bibliographic Details
Published in:Journal of biotechnology 2005-04, Vol.117 (1), p.119-129
Main Authors: Wendlandt, K.-D., Geyer, W., Mirschel, G., Hemidi, F. Al-Haj
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Poly-β-hydroxybutyrate (PHB) and other polyesters can be produced by various species of bacteria. Of the possible carbon sources, methane could prove to be one of the most suitable substrates for the manufacture of PHB. The methanotrophic strain Methylocystis sp. GB 25 DSM 7674 was applied in order to accumulate PHB in a rapid, non-sterile process. Cultivation was performed in two stages: a continuous growth phase (dilution rate 0.17 h −1) and a PHB accumulation phase under deficiency conditions of an essential nutrient (e.g. phosphorus) in batch culture. The PHB content of the biomass was as high as 51%; efficiency was the highest during the first 5 h of the product formation process. The PHB produced is of very high quality, having a high molecular mass of up to 2.5 × 10 6 Da. In order to monitor and control the process, a rapid analysis method based upon turbidimetry in the visible range (438 nm) was applied. Moreover, the PHB content of the biomass was determined using an FT-IR-spectroscopic method with ATR sampling and multivariate calibration. We achieved a value of 1.4% as the best standard error of cross validation. The nitrogen content of the PHB final product (a product quality parameter) was estimated by spectroscopic method in the visible range.
ISSN:0168-1656
1873-4863
DOI:10.1016/j.jbiotec.2005.01.007